采用真空法对湿加松(Pinus elliottii Х p.catibaea)木材进行防腐处理,研究不同防腐处理工艺防腐处理效果、树干不同离地高度木材和径向不同部位木材防腐可处理性的差异。结果表明防腐处理工艺、树干离地高度和径向不同部位均对湿...采用真空法对湿加松(Pinus elliottii Х p.catibaea)木材进行防腐处理,研究不同防腐处理工艺防腐处理效果、树干不同离地高度木材和径向不同部位木材防腐可处理性的差异。结果表明防腐处理工艺、树干离地高度和径向不同部位均对湿加松木材我药量有显著影响(P〈0.01)。防腐处理工艺的处理时间、真空度是影响湿加松防腐可处理性的主要因素。湿加松径向内层载药量显著高于外层(P〈0.05);湿加松径向木材和枝下高部分(0~9.3m)轴向木材的载药量与木材气干密度呈负相关;树干离地高度为93~11.3m的湿加松木材载药量最小。展开更多
This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that th...This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that the outputs of the output layer in the FNNs for classification correspond to the estimates of posteriori probability of the input pattern samples with desired outputs 1 or 0. The theorem for the generalized kernel function in the radial basis function networks (RBFN) is given. For an 2-layer perceptron network (2-LPN). an idea of using extended samples to improve generalization capability is proposed. Finally. the experimental results of radar target classification are given to verify the generaliztion capability of the RBFNs.展开更多
Hydrodynamic deep drawing assisted by radial pressure is an advanced sheet forming technology with great advantages such as higher drawing ratio, good surface quality and higher dimensional accuracy. In this process, ...Hydrodynamic deep drawing assisted by radial pressure is an advanced sheet forming technology with great advantages such as higher drawing ratio, good surface quality and higher dimensional accuracy. In this process, both the bottom surface and the peripheral edge of sheets are under hydrodynamic pressure, so that the forming procedure is more uniform with low failure probability. Multi-layered sheets with complex geometries could be formed more easily with this technique compared with other traditional methods. Rupture is the main irrecoverable failure form in sheet forming processes. Prediction of rupture occurrence is of great importance for determining and optimizing the proper process parameters. In this research, a theoretical model was proposed to calculate the critical rupture pressure in production of double layered conical parts with hydrodynamic deep drawing process assisted by radial pressure. The effects of other process parameters on critical rupture pressure, such as punch tip radius, drawing ratio, coefficient of friction, sheet thickness and material properties were also discussed. The proposed model was compared with finite element simulation and validated by experiments on Al1050/St13 double layered sheets, where a good agreement was found with analytical results.展开更多
This paper presents an efficient parallel algorithm for the shortest path problem in planar layered digraphs that runs in O(log^3n) time with n processors. The algorithms uses a divide and conquer approach and is base...This paper presents an efficient parallel algorithm for the shortest path problem in planar layered digraphs that runs in O(log^3n) time with n processors. The algorithms uses a divide and conquer approach and is based on the novel idea of a one-way separator, which has the property that any directed path can be crossed only once.展开更多
Based on the serial-parallel model of single-layer board and the lamination theory, the forces exerted on different layers of the high-pressure hose and the resulting deformations were analyzed when the hose was radia...Based on the serial-parallel model of single-layer board and the lamination theory, the forces exerted on different layers of the high-pressure hose and the resulting deformations were analyzed when the hose was radially stretched. An equation was proposed to calculate the anisotropic elastic constant of the composite layer with the wound steel wires. Furthermore, the finite element analysis (FEA) model of the high-pressure hose was established, followed by a simulation of the forces that act on different layers, and their deformations. The simulation results show that the stress imposed on the inner reinforced layer and external reinforced layer of the high-pressure hose are approximately 150 MPa and 115 MPa, respectively, in the presence of inner pressure. The stress of the rubber coating and polyethylene coating is lower. The lowest stress occurs on the inner surface of the high-pressure hose and the rubber coating between the two composite layers. The deformation of the rubber layer in the inner surface of the high-pressure hose decreases gradually along the radial direction from the inner surface to the external surface. The deformation of the reinforced composite layer is less than that of the external surface of the rubber coating. The equivalent stress of the reinforced composite layer is higher than that caused by the inner pressure, due to the presence of both inner pressure and axial tension.展开更多
文摘采用真空法对湿加松(Pinus elliottii Х p.catibaea)木材进行防腐处理,研究不同防腐处理工艺防腐处理效果、树干不同离地高度木材和径向不同部位木材防腐可处理性的差异。结果表明防腐处理工艺、树干离地高度和径向不同部位均对湿加松木材我药量有显著影响(P〈0.01)。防腐处理工艺的处理时间、真空度是影响湿加松防腐可处理性的主要因素。湿加松径向内层载药量显著高于外层(P〈0.05);湿加松径向木材和枝下高部分(0~9.3m)轴向木材的载药量与木材气干密度呈负相关;树干离地高度为93~11.3m的湿加松木材载药量最小。
文摘This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that the outputs of the output layer in the FNNs for classification correspond to the estimates of posteriori probability of the input pattern samples with desired outputs 1 or 0. The theorem for the generalized kernel function in the radial basis function networks (RBFN) is given. For an 2-layer perceptron network (2-LPN). an idea of using extended samples to improve generalization capability is proposed. Finally. the experimental results of radar target classification are given to verify the generaliztion capability of the RBFNs.
文摘Hydrodynamic deep drawing assisted by radial pressure is an advanced sheet forming technology with great advantages such as higher drawing ratio, good surface quality and higher dimensional accuracy. In this process, both the bottom surface and the peripheral edge of sheets are under hydrodynamic pressure, so that the forming procedure is more uniform with low failure probability. Multi-layered sheets with complex geometries could be formed more easily with this technique compared with other traditional methods. Rupture is the main irrecoverable failure form in sheet forming processes. Prediction of rupture occurrence is of great importance for determining and optimizing the proper process parameters. In this research, a theoretical model was proposed to calculate the critical rupture pressure in production of double layered conical parts with hydrodynamic deep drawing process assisted by radial pressure. The effects of other process parameters on critical rupture pressure, such as punch tip radius, drawing ratio, coefficient of friction, sheet thickness and material properties were also discussed. The proposed model was compared with finite element simulation and validated by experiments on Al1050/St13 double layered sheets, where a good agreement was found with analytical results.
文摘This paper presents an efficient parallel algorithm for the shortest path problem in planar layered digraphs that runs in O(log^3n) time with n processors. The algorithms uses a divide and conquer approach and is based on the novel idea of a one-way separator, which has the property that any directed path can be crossed only once.
文摘Based on the serial-parallel model of single-layer board and the lamination theory, the forces exerted on different layers of the high-pressure hose and the resulting deformations were analyzed when the hose was radially stretched. An equation was proposed to calculate the anisotropic elastic constant of the composite layer with the wound steel wires. Furthermore, the finite element analysis (FEA) model of the high-pressure hose was established, followed by a simulation of the forces that act on different layers, and their deformations. The simulation results show that the stress imposed on the inner reinforced layer and external reinforced layer of the high-pressure hose are approximately 150 MPa and 115 MPa, respectively, in the presence of inner pressure. The stress of the rubber coating and polyethylene coating is lower. The lowest stress occurs on the inner surface of the high-pressure hose and the rubber coating between the two composite layers. The deformation of the rubber layer in the inner surface of the high-pressure hose decreases gradually along the radial direction from the inner surface to the external surface. The deformation of the reinforced composite layer is less than that of the external surface of the rubber coating. The equivalent stress of the reinforced composite layer is higher than that caused by the inner pressure, due to the presence of both inner pressure and axial tension.