In the present paper, we have studied the blood flow through tapered artery with a stenosis. The non-Newtonian nature of blood in small arteries is analyzed mathematically by considering the blood as Phan-Thien-Tanner...In the present paper, we have studied the blood flow through tapered artery with a stenosis. The non-Newtonian nature of blood in small arteries is analyzed mathematically by considering the blood as Phan-Thien-Tanner fluid. The representation for the blood flow is through an axially non-symmetrical but radially symmetric stenosis. Symmetry of the distribution of the wall shearing stress and resistive impedance and their growth with the developing stenosis is another important feature of our analysis. Exact solutions have been evaluated for velocity, resistance impedance, wall shear stress and shearing stress at the stenosis throat. The graphical results of different type of tapered arteries (i.e. converging tapering, diverging tapering, non-tapered artery) have been examined for different narameters of interest.展开更多
文摘In the present paper, we have studied the blood flow through tapered artery with a stenosis. The non-Newtonian nature of blood in small arteries is analyzed mathematically by considering the blood as Phan-Thien-Tanner fluid. The representation for the blood flow is through an axially non-symmetrical but radially symmetric stenosis. Symmetry of the distribution of the wall shearing stress and resistive impedance and their growth with the developing stenosis is another important feature of our analysis. Exact solutions have been evaluated for velocity, resistance impedance, wall shear stress and shearing stress at the stenosis throat. The graphical results of different type of tapered arteries (i.e. converging tapering, diverging tapering, non-tapered artery) have been examined for different narameters of interest.