In order to have an in-depth understanding of road runoff characteristics and the linkages to their influential factors this paper investigates the road runoff quality in a city of South China Shenzhen.Four rainfall e...In order to have an in-depth understanding of road runoff characteristics and the linkages to their influential factors this paper investigates the road runoff quality in a city of South China Shenzhen.Four rainfall events with different characteristics are monitored on a typical urban road.It is noted that the road runoff quality is worse than Grade Ⅳ of environmental quality standards for surface water.This means that the road runoff has posed a serious risk to water environment health. Furthermore the research outcomes indicate that first flush highly varies with rainfall patterns and pollutant species.This means that for road runoff treatment design rainfall patterns as well as pollutant species should be taken into consideration and this is particularly essential to design first flush capturing devices. Additionally the threshold of an initial 3 to 5 mm rainfall depth is suggested to the first flush capturing device design.These results provide useful suggestions to the effective road runoff treatment design.展开更多
Runoff series of the Yangtze River presents an intricate variation tendency under the reinforced influence of human activities.The Morlet Wavelet Transform method has been applied to analyze the annual runoff data fro...Runoff series of the Yangtze River presents an intricate variation tendency under the reinforced influence of human activities.The Morlet Wavelet Transform method has been applied to analyze the annual runoff data from 1950 to 2011 at the Yangtze River Estuary.It can clearly reveal the multi-time scales structure,break point,change and distribution of periodic variation in the different time scales of the runoff series.The main conclusions are that:1) Repeated periodic oscillations accompanied by an extremely large fluctuation are presented in the runoff series with an obvious difference between wet and dry years,and the major periods of the time series are about 3,8,16 and 23 years respectively.Among them,the presented maximum periodic oscillation is 23 years scale.2) In the 23-year time scale,the wet periods are 1950-1958,1969-1980 and 1992-2003,and the dry periods are 1959-1968,1981-1991 and 2004-2011.3) It can be predicted from the view of long time scales that the low annual runoff will likely occur in the near future.展开更多
基金The National Science and Technology Major Project of China(No.2012ZX07301-001)the Shenzhen Environmental Research Project,China Postdoctoral Science Foundation(No.2013M530642)
文摘In order to have an in-depth understanding of road runoff characteristics and the linkages to their influential factors this paper investigates the road runoff quality in a city of South China Shenzhen.Four rainfall events with different characteristics are monitored on a typical urban road.It is noted that the road runoff quality is worse than Grade Ⅳ of environmental quality standards for surface water.This means that the road runoff has posed a serious risk to water environment health. Furthermore the research outcomes indicate that first flush highly varies with rainfall patterns and pollutant species.This means that for road runoff treatment design rainfall patterns as well as pollutant species should be taken into consideration and this is particularly essential to design first flush capturing devices. Additionally the threshold of an initial 3 to 5 mm rainfall depth is suggested to the first flush capturing device design.These results provide useful suggestions to the effective road runoff treatment design.
基金supported by the National Key Basic Research Program of China (Grant No. 2012CB957704) Marine Public Welfare Program of China (Grant No. 201305003)
文摘Runoff series of the Yangtze River presents an intricate variation tendency under the reinforced influence of human activities.The Morlet Wavelet Transform method has been applied to analyze the annual runoff data from 1950 to 2011 at the Yangtze River Estuary.It can clearly reveal the multi-time scales structure,break point,change and distribution of periodic variation in the different time scales of the runoff series.The main conclusions are that:1) Repeated periodic oscillations accompanied by an extremely large fluctuation are presented in the runoff series with an obvious difference between wet and dry years,and the major periods of the time series are about 3,8,16 and 23 years respectively.Among them,the presented maximum periodic oscillation is 23 years scale.2) In the 23-year time scale,the wet periods are 1950-1958,1969-1980 and 1992-2003,and the dry periods are 1959-1968,1981-1991 and 2004-2011.3) It can be predicted from the view of long time scales that the low annual runoff will likely occur in the near future.