期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于LM算法的双隐含层BP神经网络的水位预测 被引量:22
1
作者 丁红 董文永 吴德敏 《统计与决策》 CSSCI 北大核心 2014年第15期16-19,共4页
为获得更精确的径流水位预测效果,文章提出了基于Levenberg Marquardt(LM)算法的BP双隐含层神经网络模型(BPDHLM)。LM算法是梯度下降法与高斯-牛顿法的结合,能缩短BP网络的收敛时间,改善网络的收敛性能;相对单隐层而言,双隐含层BP网络... 为获得更精确的径流水位预测效果,文章提出了基于Levenberg Marquardt(LM)算法的BP双隐含层神经网络模型(BPDHLM)。LM算法是梯度下降法与高斯-牛顿法的结合,能缩短BP网络的收敛时间,改善网络的收敛性能;相对单隐层而言,双隐含层BP网络则能改善网络的性能误差,误差梯度,从而提高模型预测精度并改善网络性能。研究结果表明:该模型预报稳定性好,预报准确率高,为径流-水位时间序列预测提供一个有效建模方法。 展开更多
关键词 BP神经网络 双隐含层 Levenberg Marquardt算法 径流水位预测
下载PDF
BP神经网络在柳江径流预测中的应用 被引量:4
2
作者 丁红 吴德敏 荣杰 《广西工学院学报》 CAS 2013年第3期78-83,共6页
径流水位预测是进行洪水监测的重要手段,对于包含详尽信息的广西柳江日径流水位时间序列,采用基于BP神经网络模型进行预报可取得较好效果.如LMBPDH模型采用双隐含层BP网络能加强预测模型输入输出的非线性映射能力,采用Levenberg Marquar... 径流水位预测是进行洪水监测的重要手段,对于包含详尽信息的广西柳江日径流水位时间序列,采用基于BP神经网络模型进行预报可取得较好效果.如LMBPDH模型采用双隐含层BP网络能加强预测模型输入输出的非线性映射能力,采用Levenberg Marquardt(LM)算法对网络进行训练则能缩短BP网络的收敛时间,改善网络的收敛性能,同时采用实验法确定模型的其他参数使模型获取最佳预报性能.在对柳江近10年日平均水位的预测中,将LMBPDH模型与单隐含层BP神经网络、LM算法以及带适应学习率和动量因子的梯度递减法算法等组合构成的BP神经网络模型,以及遗传算法进化的神经网络模型比较,LMBPDH模型预报稳定性、预报准确率最佳. 展开更多
关键词 柳江径流水位预测 时间序列 BP神经网络
下载PDF
基于小波变换集成模型预测径流水位的研究 被引量:1
3
作者 丁红 武招云 +2 位作者 龚若愚 廖文凯 李湘晖 《武汉理工大学学报》 CAS CSCD 北大核心 2012年第12期143-149,共7页
为获得更精确的径流-水位预报结果,利用Dmey小波变换将水位时间序列分解为高频信号和低频信号,再使用均生函数-最优子集回归对其进行预测,最后利用Dmey小波逆变进行重构,以此建立水位预测模型。通过对柳江历年水位进行实例分析,并与均... 为获得更精确的径流-水位预报结果,利用Dmey小波变换将水位时间序列分解为高频信号和低频信号,再使用均生函数-最优子集回归对其进行预测,最后利用Dmey小波逆变进行重构,以此建立水位预测模型。通过对柳江历年水位进行实例分析,并与均生函数-最优子集回归模型、逐步回归模型对比。研究结果表明,该模型能充分反映水位时间序列趋势,预报稳定性好,预报准确率高,为径流-水位时间序列预测提供一个有效建模方法。 展开更多
关键词 小波变换 均生函数 最优子集回归 径流-水位预测
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部