[Objective] This study aimed to study on influence of rainfall runoff on non-point pollution and to reduce the pollution through control of the contamination produced from rainfall runoff. [Method] In order to explore...[Objective] This study aimed to study on influence of rainfall runoff on non-point pollution and to reduce the pollution through control of the contamination produced from rainfall runoff. [Method] In order to explore effective methods to decrease non-point pollution, we conducted analysis on hydrological process of rainfall runoff, interaction mechanism between the process and non-point pollutants, the influence on non-point pollution and hydrological model application in the research. [Result] It was proved that rainfall runoff was the main factor of non-point pollution. Control from source strengthened clearing and controlling of non-point pollutants on the ground. Growing plants in slope effectively reduced the scour and erosion of rainfall runoff on soil. The study became simple thanks for the hydrological process. [Conclusion] The research indicated that non-point pollution would be effectively reduced through control of rainfall runoff.展开更多
Stormwater runoff in rural townships has a high potential for water quality impairment but little information is available on strormwater runoff pollution from rural townships.To investigate the characteristics of run...Stormwater runoff in rural townships has a high potential for water quality impairment but little information is available on strormwater runoff pollution from rural townships.To investigate the characteristics of runoff pollution in a rural township,a catchment(2.32 ha) in Linshan Township,Sichuan,China was selected to examine runoff and quality parameters including precipitation,flow rate,and total nitrogen(TN),dissolved nitrogen(DN),total phosphorus(TP),dissolved phosphorus(DP),particulate phosphorus(PP),chemical oxygen demand(COD) and suspended solid(SS) in 12 rainfall events occurring between June 2006 and July 2007.Results show that the annual pollutant loads were 47.17 kg ha-1 for TN,6.64 kg ha-1 for TP,1186 kg ha-1 for COD,and 4297 kg ha-1 for SS.DN and PP were the main forms of nitrogen and phosphorus in stormwater runoff.TP,COD and SS showed medium mass first flushes,in which nearly 40% of the total pollutant masses were transported by the first 30% of total flow volume.The peak of pollutant concentration appeared before the peak of runoff due to the first flush of accumulative pollutants in impervious areas and drainage ditches.The EMC values of TN,TP,DN and PP were negatively correlated to the maximum rainfall intensity,precipitation,total flow volume,and runoff duration(P<0.05,n=12),while EMC of COD and SS were not related to any rainfall characteristics.The FF30(FF,First Flush) for TN,TP,COD and SS were positively correlated to the maximum rainfall intensity(P<0.05,n=12),and TP was also positively correlated to the average rainfall intensity(P<0.05,n=12),indicating that the magnitude of first flush increased with the rainfall intensity in the Linshan Township.展开更多
基金Supported by Major Special Fund of National Technology Program of China(2008ZX07421-002,2008ZX07421-004)the National High Technology Research and Development Program of China(2008AA06A412)Project Studied and Developed by Ministry of Housing and Urban-Rural Construction(2009-K7-4)~~
文摘[Objective] This study aimed to study on influence of rainfall runoff on non-point pollution and to reduce the pollution through control of the contamination produced from rainfall runoff. [Method] In order to explore effective methods to decrease non-point pollution, we conducted analysis on hydrological process of rainfall runoff, interaction mechanism between the process and non-point pollutants, the influence on non-point pollution and hydrological model application in the research. [Result] It was proved that rainfall runoff was the main factor of non-point pollution. Control from source strengthened clearing and controlling of non-point pollutants on the ground. Growing plants in slope effectively reduced the scour and erosion of rainfall runoff on soil. The study became simple thanks for the hydrological process. [Conclusion] The research indicated that non-point pollution would be effectively reduced through control of rainfall runoff.
基金supports from the Western Development Plan of CAS (No. KZCX2-XB3-09)the Project of National Science & Technology Pillar Program (No. 2011BAD31B03)
文摘Stormwater runoff in rural townships has a high potential for water quality impairment but little information is available on strormwater runoff pollution from rural townships.To investigate the characteristics of runoff pollution in a rural township,a catchment(2.32 ha) in Linshan Township,Sichuan,China was selected to examine runoff and quality parameters including precipitation,flow rate,and total nitrogen(TN),dissolved nitrogen(DN),total phosphorus(TP),dissolved phosphorus(DP),particulate phosphorus(PP),chemical oxygen demand(COD) and suspended solid(SS) in 12 rainfall events occurring between June 2006 and July 2007.Results show that the annual pollutant loads were 47.17 kg ha-1 for TN,6.64 kg ha-1 for TP,1186 kg ha-1 for COD,and 4297 kg ha-1 for SS.DN and PP were the main forms of nitrogen and phosphorus in stormwater runoff.TP,COD and SS showed medium mass first flushes,in which nearly 40% of the total pollutant masses were transported by the first 30% of total flow volume.The peak of pollutant concentration appeared before the peak of runoff due to the first flush of accumulative pollutants in impervious areas and drainage ditches.The EMC values of TN,TP,DN and PP were negatively correlated to the maximum rainfall intensity,precipitation,total flow volume,and runoff duration(P<0.05,n=12),while EMC of COD and SS were not related to any rainfall characteristics.The FF30(FF,First Flush) for TN,TP,COD and SS were positively correlated to the maximum rainfall intensity(P<0.05,n=12),and TP was also positively correlated to the average rainfall intensity(P<0.05,n=12),indicating that the magnitude of first flush increased with the rainfall intensity in the Linshan Township.