The soil nutrient losses due to excessive soil loss on Loess Plateau were studied by means of runoff plotsand systematical determination of soil nutrients both in sediments and runoff.The results show that theamounts ...The soil nutrient losses due to excessive soil loss on Loess Plateau were studied by means of runoff plotsand systematical determination of soil nutrients both in sediments and runoff.The results show that theamounts of nutrient losses depended on the amounts of erosion sediments. Along with sediment, 11-197 kgnitrogen/hectare and 9-174 kg phosphorus/hectare were lost, accounting for 92.46-99.47 percent of the totalamount of nitrogen loss and 99.85-99.99 percent of the total amount of phosphorns loss respectively. Thenutrient losses, very small in runoff, were mainly attributed to erosion of a few rainstorms during a year. Thenutrient level in sediment was mostly higher than that in the original soil. Planting grass evidently reducedthe losses of soil nutrients. The N level was lower in runoff than in rainfall so that the N loss from runoffconld be made up by rainfall. Fertilizer application to crops raised the nutrient level in runoff.展开更多
Based on monthly river runoff and meteorological data, a method of Morlet wavelet transform was used to analyze the multiple time scale characteristics of river runoff in the Dagujia River Basin, Yantai City, Shandong...Based on monthly river runoff and meteorological data, a method of Morlet wavelet transform was used to analyze the multiple time scale characteristics of river runoff in the Dagujia River Basin, Yantai City, Shandong Province. The results showed that the total annual river runoffin the Dagujia River Basin decreased significantly from 1966 to 2004, and the rate of decrease was 48× 10^6ma/10yr, which was higher than the mean value of most rivers in China. Multiple time scale characteristics existed, which accounted for different aspects of the changes in annual river runoff, and the major periods of the runofftime series were identified as about 28 years, 14 years and 4 years with decreasing levels of fluctuation. The river runoff evolution process was controlled by changes in precipitation to a certain extent, but it was also greatly influenced by human activities. Also, for different time periods and scales, the impacts of climate changes and human activities on annual river runoff evolution occurred at the same time. Changes in the annual river runoffwere mainly associated with climate change before the 1980s and with human activities after 1981.展开更多
Human activities and climate changes are deemed to be two primary driving factors influencing the changes of hydrological processes, and quantitatively separating their influences on runoff changes will be of great si...Human activities and climate changes are deemed to be two primary driving factors influencing the changes of hydrological processes, and quantitatively separating their influences on runoff changes will be of great significance to regional water resources planning and management. In this study, the impact of climate changes and human activities was initially qualitatively distinguished through a coupled water and energy budgets analysis, and then this effect was further separated by means of a quantitative estimation based on hydrological sensitivity analysis. The results show that: 1) precipitation, wind speed, potential evapotranspiration and runoff have a significantly decreasing trend, while temperature has a remarkably increasing tendency in the Weihe River Basin, China; 2) the major driving factor on runoff decrease in the 1970 s and 1990 s in the basin is climate changes compared with that in the baseline 1960 s, while that in the 1980 s and 2000 s is human activities. Compared with the results based on Variable Infiltration Capacity(VIC) model, the contributions calculated in this study have certain reliability. The results are of great significance to local water resources planning and management.展开更多
文摘The soil nutrient losses due to excessive soil loss on Loess Plateau were studied by means of runoff plotsand systematical determination of soil nutrients both in sediments and runoff.The results show that theamounts of nutrient losses depended on the amounts of erosion sediments. Along with sediment, 11-197 kgnitrogen/hectare and 9-174 kg phosphorus/hectare were lost, accounting for 92.46-99.47 percent of the totalamount of nitrogen loss and 99.85-99.99 percent of the total amount of phosphorns loss respectively. Thenutrient losses, very small in runoff, were mainly attributed to erosion of a few rainstorms during a year. Thenutrient level in sediment was mostly higher than that in the original soil. Planting grass evidently reducedthe losses of soil nutrients. The N level was lower in runoff than in rainfall so that the N loss from runoffconld be made up by rainfall. Fertilizer application to crops raised the nutrient level in runoff.
基金Under the auspices of National Key Science and Technology Support Program of China (No. 2006BCA01A07-2)National Natural Science Foundation of China (No. 40101005)Science Foundation of Shandong Province, China (No. Q02E03)
文摘Based on monthly river runoff and meteorological data, a method of Morlet wavelet transform was used to analyze the multiple time scale characteristics of river runoff in the Dagujia River Basin, Yantai City, Shandong Province. The results showed that the total annual river runoffin the Dagujia River Basin decreased significantly from 1966 to 2004, and the rate of decrease was 48× 10^6ma/10yr, which was higher than the mean value of most rivers in China. Multiple time scale characteristics existed, which accounted for different aspects of the changes in annual river runoff, and the major periods of the runofftime series were identified as about 28 years, 14 years and 4 years with decreasing levels of fluctuation. The river runoff evolution process was controlled by changes in precipitation to a certain extent, but it was also greatly influenced by human activities. Also, for different time periods and scales, the impacts of climate changes and human activities on annual river runoff evolution occurred at the same time. Changes in the annual river runoffwere mainly associated with climate change before the 1980s and with human activities after 1981.
基金Under the auspices of National Natural Science Foundation of China(No.51190093,51179149,51179149,51309098)National Basic Research Program of China(No.2011CB403306)+2 种基金Non-profit Industry Financial Program of Ministry of Water Resources(No.201301039)Program for New Century Excellent Talents in Ministry of Education(No.NCET-10-0933)Key Innovation Group of Science and Technology of Shaanxi Province(No.2012KCT-10)
文摘Human activities and climate changes are deemed to be two primary driving factors influencing the changes of hydrological processes, and quantitatively separating their influences on runoff changes will be of great significance to regional water resources planning and management. In this study, the impact of climate changes and human activities was initially qualitatively distinguished through a coupled water and energy budgets analysis, and then this effect was further separated by means of a quantitative estimation based on hydrological sensitivity analysis. The results show that: 1) precipitation, wind speed, potential evapotranspiration and runoff have a significantly decreasing trend, while temperature has a remarkably increasing tendency in the Weihe River Basin, China; 2) the major driving factor on runoff decrease in the 1970 s and 1990 s in the basin is climate changes compared with that in the baseline 1960 s, while that in the 1980 s and 2000 s is human activities. Compared with the results based on Variable Infiltration Capacity(VIC) model, the contributions calculated in this study have certain reliability. The results are of great significance to local water resources planning and management.