期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于MK-SVM和时序特征分析的月径流预报模型
1
作者 雷庆文 闫磊 +2 位作者 巫晨煜 罗云 谢笑添 《水资源保护》 EI CAS CSCD 北大核心 2024年第6期148-154,共7页
针对传统径流预报方法预报因子不确定性和预报模型复杂性问题,基于月径流时序特征重要性分析选择预报因子,采用混合核函数支持向量机(MK-SVM)模型捕捉径流时序间的非线性关系,提出动态透镜成像反向学习和Lévy飞行等多策略融合的改... 针对传统径流预报方法预报因子不确定性和预报模型复杂性问题,基于月径流时序特征重要性分析选择预报因子,采用混合核函数支持向量机(MK-SVM)模型捕捉径流时序间的非线性关系,提出动态透镜成像反向学习和Lévy飞行等多策略融合的改进灰狼优化算法(IGWO),并构建了径流预报的IGWO-MK-SVM模型。黑河流域莺落峡水文站月径流预报结果表明:IGWO-MK-SVM模型月径流预报结果的纳什效率系数、均方根误差、Kling-Gupta效率系数分别为0.8942、16.9099 m^(3)/s和0.8639;与传统SVM模型相比,IGWO-MK-SVM模型在径流预报中的自适应性有所提升,相较于长短期记忆网络模型和季节性差分自回归移动平均模型,IGWO-MK-SVM模型能更好地预报月径流的真实变化过程。 展开更多
关键词 径流预报 随机森林 径流预报因子 混合核函数支持向量机 改进灰狼优化算法 黑河流域
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部