[Objective] This study aimed to optimize the extraction process parameters of Pu-erh tea polysaccharide. [Method] Single-factor experiment was carried out to analyze the influences of three main factors, including ext...[Objective] This study aimed to optimize the extraction process parameters of Pu-erh tea polysaccharide. [Method] Single-factor experiment was carried out to analyze the influences of three main factors, including extraction temperature, ex- traction duration and solid-liquid ratio, on the extraction yield of tea polysaccharide. Box-Behnken central composite design and response surface methodology were adopted to determine the optimal extraction process of Pu-erh tea polysaccharide. [Result] The results of response surface analysis showed that the optimal extraction process was solid-liquid ratio of 1:17, extraction temperature of 80 ℃ and extraction duration of 78.5 min, and the Pu-erh tea polysaccharide yield was 12.72%. [Conclu- sion] Using response surface methodology (RSM) is feasible for the optimization of Pu-erh tea polysaccharide extraction process, and the tea polysaccharide yield increased significantly.展开更多
基金Supported by National Science and Technology Support Program of China (2007BAD58B03)~~
文摘[Objective] This study aimed to optimize the extraction process parameters of Pu-erh tea polysaccharide. [Method] Single-factor experiment was carried out to analyze the influences of three main factors, including extraction temperature, ex- traction duration and solid-liquid ratio, on the extraction yield of tea polysaccharide. Box-Behnken central composite design and response surface methodology were adopted to determine the optimal extraction process of Pu-erh tea polysaccharide. [Result] The results of response surface analysis showed that the optimal extraction process was solid-liquid ratio of 1:17, extraction temperature of 80 ℃ and extraction duration of 78.5 min, and the Pu-erh tea polysaccharide yield was 12.72%. [Conclu- sion] Using response surface methodology (RSM) is feasible for the optimization of Pu-erh tea polysaccharide extraction process, and the tea polysaccharide yield increased significantly.