In this work, we fabricate an efficient and stable photocatalyst system which has superior recyclability even under concentrated acidic conditions. The photocatalyst is prepared by assembling magnetic graphitic nanoca...In this work, we fabricate an efficient and stable photocatalyst system which has superior recyclability even under concentrated acidic conditions. The photocatalyst is prepared by assembling magnetic graphitic nanocapsules, titania(Ti O2) and graphene oxide(GO) into a complex system through π-π stacking and electrostatic interactions. Such catalytic complex demonstrates very high stability. Even after dispersal into a concentrated acidic solution for one month, this photocatalyst could still be recycled and maintain its catalytic activity. With methyl orange as the model molecule, the photocatalyst is demonstrated to rapidly decompose the molecules with very high photocatalytic activity under both concentrated acidic and neutral condition. Moreover, this photocatalyst retains approximately 100 wt% of its original photocatalytic activity even after multiple experimental runs, of magnetic recycling. Finally, using different samples from natural water sources and different dyes, this GO/ magnetic graphitic nanocapsule/Ti O2 system also demonstrates its high efficiency and recyclability for practical application.展开更多
A novel layered hexagonal boron nitride/titanium dioxide(h-BN/TiO2) composite photocatalyst has been constructed by anchoring TiO2 nanoflakes on the surface of hBN flakes via a solvothermal method. The morphology and ...A novel layered hexagonal boron nitride/titanium dioxide(h-BN/TiO2) composite photocatalyst has been constructed by anchoring TiO2 nanoflakes on the surface of hBN flakes via a solvothermal method. The morphology and dispersion of TiO2 can be tuned by controlling the amount of flake h-BN. Benefiting from the unique hetero-structure, the photocatalytic performance of the obtained composite toward rhodamine B(Rh B) degradation is greatly enhanced, among which 12 wt% h-BN/TiO2 composites show 3.5 and 6.9 times higher degradation rate than the synthesized TiO2 and commercial TiO2(P25), respectively, and an excellent cycling stability has also been obtained. Moreover, the first-principles calculation reveals the synergetic catalytic effect between TiO2 and h-BN flake, which is found to be responsible for the significantly enhanced photocatalytic performance of h-BN/TiO2 composites.展开更多
基金supported by the National Basic Research Program of China(2013CB932702)the Research Fund for the Program on National Key Scientific Instruments and Equipment Development(2011YQ0301241402)+1 种基金the National Natural Science Foundation of China(21105025)the Hunan Innovation and Entrepreneurship Program
文摘In this work, we fabricate an efficient and stable photocatalyst system which has superior recyclability even under concentrated acidic conditions. The photocatalyst is prepared by assembling magnetic graphitic nanocapsules, titania(Ti O2) and graphene oxide(GO) into a complex system through π-π stacking and electrostatic interactions. Such catalytic complex demonstrates very high stability. Even after dispersal into a concentrated acidic solution for one month, this photocatalyst could still be recycled and maintain its catalytic activity. With methyl orange as the model molecule, the photocatalyst is demonstrated to rapidly decompose the molecules with very high photocatalytic activity under both concentrated acidic and neutral condition. Moreover, this photocatalyst retains approximately 100 wt% of its original photocatalytic activity even after multiple experimental runs, of magnetic recycling. Finally, using different samples from natural water sources and different dyes, this GO/ magnetic graphitic nanocapsule/Ti O2 system also demonstrates its high efficiency and recyclability for practical application.
基金supported by the National Natural Science Foundation for Excellent Young Scholars of China (51522402)the National Postdoctoral Program for Innovative Talents (BX20180034)+1 种基金the Fundamental Research Funds for the Central Universities (FRF-TP-18-045A1)China Postdoctoral Science Foundation (2018M641192)
文摘A novel layered hexagonal boron nitride/titanium dioxide(h-BN/TiO2) composite photocatalyst has been constructed by anchoring TiO2 nanoflakes on the surface of hBN flakes via a solvothermal method. The morphology and dispersion of TiO2 can be tuned by controlling the amount of flake h-BN. Benefiting from the unique hetero-structure, the photocatalytic performance of the obtained composite toward rhodamine B(Rh B) degradation is greatly enhanced, among which 12 wt% h-BN/TiO2 composites show 3.5 and 6.9 times higher degradation rate than the synthesized TiO2 and commercial TiO2(P25), respectively, and an excellent cycling stability has also been obtained. Moreover, the first-principles calculation reveals the synergetic catalytic effect between TiO2 and h-BN flake, which is found to be responsible for the significantly enhanced photocatalytic performance of h-BN/TiO2 composites.