Watlow宣布推出Cast-X Series 2000流体循环加热器,该产品设计在一个非常小的封装内,为许多对洁净、温度准确度、高压力等应用领域实现流体循环加热,适合的应用领域包括:溶液(济)加热、热传输系统、超净气体加热、食物和饮料加热...Watlow宣布推出Cast-X Series 2000流体循环加热器,该产品设计在一个非常小的封装内,为许多对洁净、温度准确度、高压力等应用领域实现流体循环加热,适合的应用领域包括:溶液(济)加热、热传输系统、超净气体加热、食物和饮料加热、绘画作品加热等等。展开更多
Heat transfer characteristics between the immersed heater and the bed content were studied in the riser of a liquid-solid circulating fluidized bed, whose diameter and height were 0.102 m (ID) and 2.5 m, respectively....Heat transfer characteristics between the immersed heater and the bed content were studied in the riser of a liquid-solid circulating fluidized bed, whose diameter and height were 0.102 m (ID) and 2.5 m, respectively. Effects of liquid velocity, particle size, surface tension of liquid phase and solid circulation rate on the overall heat transfer coefficient were examined. The heat transfer coefficient increased with increasing particle size or solid circulation rate due to the higher potential of particles to contact with the heater surface and promote turbulence near the heater surface. The value of heat transfer coefficient increased gradually with increase in the surface tension of liquid phase, due to the slight increase of solid holdup. The heat transfer coefficient increased with the liquid velocity even in the higher range, due to the solid circulation prevented the decrease in solid holdup, in contrast to that in the conventional liquid-solid fluidized beds. The values of heat transfer coefficient were well correlated in terms of dimensionless groups as well as operating variables.展开更多
基金Supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP)GTL Technology Development Consortium (Korean National Oil Corp., Korea Gas Corp., Daelim Industrial Co. and Hyundai Engineering Co.) under "Energy Efficiency & Resources Programs" of the Ministry of Knowledge Economy, Republic of Korea
文摘Heat transfer characteristics between the immersed heater and the bed content were studied in the riser of a liquid-solid circulating fluidized bed, whose diameter and height were 0.102 m (ID) and 2.5 m, respectively. Effects of liquid velocity, particle size, surface tension of liquid phase and solid circulation rate on the overall heat transfer coefficient were examined. The heat transfer coefficient increased with increasing particle size or solid circulation rate due to the higher potential of particles to contact with the heater surface and promote turbulence near the heater surface. The value of heat transfer coefficient increased gradually with increase in the surface tension of liquid phase, due to the slight increase of solid holdup. The heat transfer coefficient increased with the liquid velocity even in the higher range, due to the solid circulation prevented the decrease in solid holdup, in contrast to that in the conventional liquid-solid fluidized beds. The values of heat transfer coefficient were well correlated in terms of dimensionless groups as well as operating variables.