现有用户画像方法缺乏不同粒度文本信息表示,且特征提取阶段存在噪声,导致构建画像不够准确。针对以上问题,提出一种融合多粒度信息的用户画像生成方法(user profile based on multi-granularity information fusion,UP-MGIF)。首先,该...现有用户画像方法缺乏不同粒度文本信息表示,且特征提取阶段存在噪声,导致构建画像不够准确。针对以上问题,提出一种融合多粒度信息的用户画像生成方法(user profile based on multi-granularity information fusion,UP-MGIF)。首先,该方法在嵌入层融合字粒度、词粒度表示向量以扩充特征内容;其次,在改进双向门控循环单元网络基础上,结合降噪自编码器和注意力机制设计一种特征提取混合模型Bi-GRU-DAE-Attention,实现特征降噪和语义增强;最后,将鲁棒性强的特征向量输入到分类器中实现用户画像生成。实验表明,该用户画像生成方法在医疗和互联网两个画像数据集上的分类准确率高于其他基线方法,并通过消融实验验证了各个模块的有效性。展开更多
针对预训练模型BRET所面临的模型复杂、参数规模大带来的训练难度提升问题,提出一种基于ALBERT(A Little BERT)的情感分析模型ALBERT-BiGRU-attention-CRF。在online_shopping_10_cats网络购物评论数据集上取得了93.58%的F1值,同传统BiG...针对预训练模型BRET所面临的模型复杂、参数规模大带来的训练难度提升问题,提出一种基于ALBERT(A Little BERT)的情感分析模型ALBERT-BiGRU-attention-CRF。在online_shopping_10_cats网络购物评论数据集上取得了93.58%的F1值,同传统BiGRU-CRF等情感分析模型相比均有所提升,同BERT模型相比在P值上提升0.61%,且缩短将近一半运行速度时间。实验结果最终表明该模型在缩减模型参数需求,增加运行效率的同时能有效保留类似BERT模型的模型表现。展开更多
文摘现有用户画像方法缺乏不同粒度文本信息表示,且特征提取阶段存在噪声,导致构建画像不够准确。针对以上问题,提出一种融合多粒度信息的用户画像生成方法(user profile based on multi-granularity information fusion,UP-MGIF)。首先,该方法在嵌入层融合字粒度、词粒度表示向量以扩充特征内容;其次,在改进双向门控循环单元网络基础上,结合降噪自编码器和注意力机制设计一种特征提取混合模型Bi-GRU-DAE-Attention,实现特征降噪和语义增强;最后,将鲁棒性强的特征向量输入到分类器中实现用户画像生成。实验表明,该用户画像生成方法在医疗和互联网两个画像数据集上的分类准确率高于其他基线方法,并通过消融实验验证了各个模块的有效性。
文摘针对预训练模型BRET所面临的模型复杂、参数规模大带来的训练难度提升问题,提出一种基于ALBERT(A Little BERT)的情感分析模型ALBERT-BiGRU-attention-CRF。在online_shopping_10_cats网络购物评论数据集上取得了93.58%的F1值,同传统BiGRU-CRF等情感分析模型相比均有所提升,同BERT模型相比在P值上提升0.61%,且缩短将近一半运行速度时间。实验结果最终表明该模型在缩减模型参数需求,增加运行效率的同时能有效保留类似BERT模型的模型表现。