In this paper, the principles of airlift loop reactor in gas-liquid and gas-liquid-solid systems are extended to gas-solid system. The models on bed average voidage in draft tube and the particle circulation velocity ...In this paper, the principles of airlift loop reactor in gas-liquid and gas-liquid-solid systems are extended to gas-solid system. The models on bed average voidage in draft tube and the particle circulation velocity in a gas-solid loop reactor are deduced. The experiments are also conducted on a Φ600mm×7000mm reactor. The catalyst voidage and catalyst circulation velocity are measured at different radial and axial positions in draft tube and annulus, respectively. The experimental data are analyzed systemically and represented satisfactorily by the proposed models.展开更多
Based on the momentum conservation approach, a theoretical model was developed to predict the superficial liquid velocity, and a correlation equation was established to calculate the gas holdup of an annular external-...Based on the momentum conservation approach, a theoretical model was developed to predict the superficial liquid velocity, and a correlation equation was established to calculate the gas holdup of an annular external-loop airlift reactor(AELAR)in the bubble flow and developing slug flow pattern. Experiments were performed by using tap-water and silicone oil with the viscosity of 2.0 mm^2/s(2cs-SiO)and 5.0 mm^2/s(5cs-SiO)as liquid phases. The effects of liquid viscosity and flow pattern on the AELAR performance were investigated. The predictions of the proposed model were in good agreement with the experimental results of the AELAR. In addition, the comparison of the experimental results shows that the proposed model has good accuracy and could be used to predict the gas holdup and liquid velocity of an AELAR operating in bubble and developing flow pattern.展开更多
A multi-tube air-lift loop reactor (MT-ALR) is presented in this paper. Based on the energy conservation, a mathematical model describing the liquid circulation flow rate was developed, which was determined by gas vel...A multi-tube air-lift loop reactor (MT-ALR) is presented in this paper. Based on the energy conservation, a mathematical model describing the liquid circulation flow rate was developed, which was determined by gas velocity, the cross areas of riser and downcomer, gas hold-up and the local frictional loss coefficient. The experimental data indicate that either increase of gas flow rate or reduction of the downcomer diameter contributes to higher liquid circulation rate. The correlation between total and the local frictional loss coefficients was also established.Effects of gas flowrate in two risers and diameter of downcomer on the liquid circulation rate were examined. The value of total frictional loss coefficient was measured as a function of the cross area of downcomer and independent of the gas flow rate. The calculated results of liquid circulation rates agreed well with the experimental data with an average relative error of 9.6%.展开更多
The properties of circulating gas have a significant effect on sintering with flue gas recirculation,and the influence of CO in sintering process was investigated.The results show that the post-combustion of CO conduc...The properties of circulating gas have a significant effect on sintering with flue gas recirculation,and the influence of CO in sintering process was investigated.The results show that the post-combustion of CO conducts in sinter zone when flue gas passes through the sintering bed,which releases much heat and reduces the consumption of solid fuel.The ratio of coke breeze can be reduced from 5% to 4.7% with 2% CO in circulating flue gas.In addition,with the increase of CO content in circulating flue gas,the combustion efficiency of fuel is improved,and the flame front is increased slightly while still matches with the heat transfer front.These are beneficial to increasing the maximum temperature and prolonging the high temperature duration,especially in the upper layer of sintering bed.As a consequence,the productivity,vertical sintering velocity and quality of sinter are improved.展开更多
Water in the mantle transition zone and the core-mantle boundary plays a key role in Earth’s stratification,volatile cycling,and core formation.If water transportation is actively running between the aforementioned l...Water in the mantle transition zone and the core-mantle boundary plays a key role in Earth’s stratification,volatile cycling,and core formation.If water transportation is actively running between the aforementioned layers,the lower mantle should contain water channels with distinctive seismic and/or electromagnetic signatures.Here,we investigated the electrical conductivity and sound velocity ofε-FeOOH up to 71 GPa and 1800 K and compared them with global tomography data.An abrupt threeorder jump of electrical conductivity was observed above 50 GPa,reaching 1.24(12)×10^(3)S/m at 61 GPa.Meanwhile,the longitudinal sound velocity dropped by 16.8%in response to the high-to-low spin transition of Fe^(3+).The high-conductivity and low-sound velocity ofε-FeOOH match the features of heterogenous scatterers in the mid-lower mantle.Such unique properties of hydrousε-FeOOH,or possibly other Fe-enriched phases can be detected as evidence of active water transportation in the mid-lower mantle.展开更多
文摘In this paper, the principles of airlift loop reactor in gas-liquid and gas-liquid-solid systems are extended to gas-solid system. The models on bed average voidage in draft tube and the particle circulation velocity in a gas-solid loop reactor are deduced. The experiments are also conducted on a Φ600mm×7000mm reactor. The catalyst voidage and catalyst circulation velocity are measured at different radial and axial positions in draft tube and annulus, respectively. The experimental data are analyzed systemically and represented satisfactorily by the proposed models.
基金Supported by the National Natural Science Foundation of China(No.51478297)Program of Introducing Talents of Discipline(No.B13011)
文摘Based on the momentum conservation approach, a theoretical model was developed to predict the superficial liquid velocity, and a correlation equation was established to calculate the gas holdup of an annular external-loop airlift reactor(AELAR)in the bubble flow and developing slug flow pattern. Experiments were performed by using tap-water and silicone oil with the viscosity of 2.0 mm^2/s(2cs-SiO)and 5.0 mm^2/s(5cs-SiO)as liquid phases. The effects of liquid viscosity and flow pattern on the AELAR performance were investigated. The predictions of the proposed model were in good agreement with the experimental results of the AELAR. In addition, the comparison of the experimental results shows that the proposed model has good accuracy and could be used to predict the gas holdup and liquid velocity of an AELAR operating in bubble and developing flow pattern.
基金Supported by Liaoning Provincial Natural Science Foundation(No.972050).
文摘A multi-tube air-lift loop reactor (MT-ALR) is presented in this paper. Based on the energy conservation, a mathematical model describing the liquid circulation flow rate was developed, which was determined by gas velocity, the cross areas of riser and downcomer, gas hold-up and the local frictional loss coefficient. The experimental data indicate that either increase of gas flow rate or reduction of the downcomer diameter contributes to higher liquid circulation rate. The correlation between total and the local frictional loss coefficients was also established.Effects of gas flowrate in two risers and diameter of downcomer on the liquid circulation rate were examined. The value of total frictional loss coefficient was measured as a function of the cross area of downcomer and independent of the gas flow rate. The calculated results of liquid circulation rates agreed well with the experimental data with an average relative error of 9.6%.
基金Projects(51174253,51304245)supported by the National Natural Science Foundation of ChinaProject(2013bjjxj015)supported by the Outstanding and Creative Doctor Scholarship of Central South University,ChinaProject supported by the Hunan Provincial Innovation Foundation for Postgraduate,China
文摘The properties of circulating gas have a significant effect on sintering with flue gas recirculation,and the influence of CO in sintering process was investigated.The results show that the post-combustion of CO conducts in sinter zone when flue gas passes through the sintering bed,which releases much heat and reduces the consumption of solid fuel.The ratio of coke breeze can be reduced from 5% to 4.7% with 2% CO in circulating flue gas.In addition,with the increase of CO content in circulating flue gas,the combustion efficiency of fuel is improved,and the flame front is increased slightly while still matches with the heat transfer front.These are beneficial to increasing the maximum temperature and prolonging the high temperature duration,especially in the upper layer of sintering bed.As a consequence,the productivity,vertical sintering velocity and quality of sinter are improved.
基金supported by the Research Start-up Funds of Talents of Sichuan University (1082204112667)China Postdoctoral Science Foundation (18NZ021-0213216308)+6 种基金supported by Spanish Mineco Project (FIS2017-83295-P)supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB41000000)supported by the China Academy of Engineering Physics Research Project (CX20210048)a Tencent Xplorer Prizepartially supported by the National Natural Science Foundation of China (42074098)the United Laboratory of High-pressure Physics and Earthquake Science (HPPES202001)the China Academy of Engineering Physics Joint Fund (U1530402)
文摘Water in the mantle transition zone and the core-mantle boundary plays a key role in Earth’s stratification,volatile cycling,and core formation.If water transportation is actively running between the aforementioned layers,the lower mantle should contain water channels with distinctive seismic and/or electromagnetic signatures.Here,we investigated the electrical conductivity and sound velocity ofε-FeOOH up to 71 GPa and 1800 K and compared them with global tomography data.An abrupt threeorder jump of electrical conductivity was observed above 50 GPa,reaching 1.24(12)×10^(3)S/m at 61 GPa.Meanwhile,the longitudinal sound velocity dropped by 16.8%in response to the high-to-low spin transition of Fe^(3+).The high-conductivity and low-sound velocity ofε-FeOOH match the features of heterogenous scatterers in the mid-lower mantle.Such unique properties of hydrousε-FeOOH,or possibly other Fe-enriched phases can be detected as evidence of active water transportation in the mid-lower mantle.