Based on the in situ XBT and other data sets, by analyzing the seasonal cycle of the mixed layer depth (MLD) and using the conservative potential vorticity (PV) as a tool, a clear description of the formation process ...Based on the in situ XBT and other data sets, by analyzing the seasonal cycle of the mixed layer depth (MLD) and using the conservative potential vorticity (PV) as a tool, a clear description of the formation process of the North Pacific Subtropical Mode Water (NPSTMW) is presented for explaining the well known 'Stommel Demon'. The forming of NPSTMW reflects well the ventilation process of the isotherms of the permanent thermocline. The formation process can be divided into the 'ventilation' phase and the 'formation' phase. In the first phase (October-March), with large heat losses at the sea surface from October, the mixed layer deepens and correspondingly, the water mass with low PV emerges and sinks. After continual cooling from October to March, the mixed layer reaches its maximum value ( >300 m) in March. Then, in the second phase (April-June), the mixed layer shoals rapidly from April, a large part of the low PV water mass is sheltered from further air-sea interaction by the emerging seasonal thermocline, and thus forms new NPSTMW. Further analysis indicates that the formation region of warm NPSTMW (17-18℃) is limited between 140°-150°E, while the relatively cold NPSTMW (16-17℃) originates in a wider longitude range (140°-170°E).Climate features of NPSTMW are presented with the use of climatological Levitus (1994 a, b) dataset. It is shown that NPSTMW lies in the region of (130°-170°E, 22°-34°N) with core temperature ranging from about 16-19℃ and potential density around 25-25.8σθ NPSTMW has a three-dimensional structure lying below the seasonal thermocline (about 100 m deep) and reaches almost to 350m depths.展开更多
Nitrogen cycling has profound effects on carbon uptake in the terrestrial ecosystem and the response of the biosphere to climate changes.However,nutrient cycling is not taken into account in most land surface models f...Nitrogen cycling has profound effects on carbon uptake in the terrestrial ecosystem and the response of the biosphere to climate changes.However,nutrient cycling is not taken into account in most land surface models for climate change.In this study,a nitrogen model,based on nitrogen transformation processes and nitrogen fluxes exchange between the atmosphere and terrestrial ecosystem,was incorporated into the Atmosphere–Vegetation Interaction Model(AVIM)to simulate the carbon cycle under nitrogen limitation.This new model,AVIM-CN,was evaluated against site-scale eddy covariance–based measurements of an alpine meadow located at Damxung station from the FLUXNET 2015 dataset.Results showed that the annual mean gross primary production simulated by AVIM-CN(0.7073 gC m^-2 d^-1)was in better agreement with the corresponding flux data(0.5407 gC m^-2 d^-1)than the original AVIM(1.1403 gC m^-2 d^-1)at Damxung station.Similarly,ecosystem respiration was also down-regulated,from 1.7695 gC m^-2 d^-1 to 1.0572 gC m^-2 d^-1,after the nitrogen processes were introduced,and the latter was closer to the observed vales(0.8034 gC m^-2 d^-1).Overall,the new results were more consistent with the daily time series of carbon and energy fluxes of observations compared to the former version without nitrogen dynamics.A model that does not incorporate the limitation effects of nitrogen nutrient availability will probably overestimate carbon fluxes by about 40%.展开更多
Based on the Cluster Renewal Model of the particle motion in a CFB riser, a revised heat transfer model is developed, which introduces the latest research results of the hydrodynamics of the suspension flow in CFB. Th...Based on the Cluster Renewal Model of the particle motion in a CFB riser, a revised heat transfer model is developed, which introduces the latest research results of the hydrodynamics of the suspension flow in CFB. This model divides the heat transfer into two parts, which are due to the transient heat conduction by the covered clusters and the convection between the uncovered wall and the dispersed phase. Radiation at high temperature is regarded as being additive. The fraction of the covered wall by clusters is revised by a new formula, which is a function of the operating condition and the particle properties. The radiation between the dispersed phase and the uncovered wall includes not only the direct radiation to the uncovered wall, but also the radiation to the clusters and then reflected to the uncovered wall. Calculation was carried out for the CFB heat transfer model. The results were compared with the published typical experimental data of other researchers and showed a good agreement between them.展开更多
The accuracy of the simulation of carbon and water processes largely relies on the selection of atmospheric forcing datasets when driving land surface models(LSM).Particularly in high-altitude regions,choosing appropr...The accuracy of the simulation of carbon and water processes largely relies on the selection of atmospheric forcing datasets when driving land surface models(LSM).Particularly in high-altitude regions,choosing appropriate atmospheric forcing datasets can effectively reduce uncertainties in the LSM simulations.Therefore,this study conducted four offline LSM simulations over the Tibetan Plateau(TP)using the Community Land Model version 4.5(CLM4.5)driven by four state-of-the-art atmospheric forcing datasets.The performances of CRUNCEP(CLM4.5 model default)and three other reanalysis-based atmospheric forcing datasets(i.e.ITPCAS,GSWP3 and WFDEI)in simulating the net primary productivity(NPP)and actual evapotranspiration(ET)were evaluated based on in situ and gridded reference datasets.Compared with in situ observations,simulated results exhibited determination coefficients(R2)ranging from 0.58 to 0.84 and 0.59 to 0.87 for observed NPP and ET,respectively,among which GSWP3 and ITPCAS showed superior performance.At the plateau level,CRUNCEP-based simulations displayed the largest bias compared with the reference NPP and ET.GSWP3-based simulations demonstrated the best performance when comprehensively considering both the magnitudes and change trends of TP-averaged NPP and ET.The simulated ET increase over the TP during 1982-2010 based on ITPCAS was significantly greater than in the other three simulations and reference ET,suggesting that ITPCAS may not be appropriate for studying long-term ET changes over the TP.These results suggest that GSWP3 is recommended for driving CLM4.5 in conducting long-term carbon and water processes simulations over the TP.This study contributes to enhancing the accuracy of LSM in water-carbon simulations over alpine regions.展开更多
Performance improvement of existing 200 litres capacity natural convection type domestic solar hot water system is attempted.A two-stage centrifugal pump driven by a vertical axis windmill having Savonius type rotor i...Performance improvement of existing 200 litres capacity natural convection type domestic solar hot water system is attempted.A two-stage centrifugal pump driven by a vertical axis windmill having Savonius type rotor is added to the fluid loop.The windmill driven pump circulates the water through the collector.The system with necessary instrumentation is tested over a day.Tests on Natural Circulation System(NCS)mode and Wind Assisted System(WAS)mode are carried out during January,April,July and October,2009.Test results of a clear day are reported.Daily average efficiency of 25-28% during NCS mode and 33-37% during WAS mode are obtained.With higher wind velocities,higher collector flow rates and hence higher efficiencies are obtained.In general,WAS mode provides improvements in efficiency when compared to NCS mode.展开更多
基金supported by Free Application(No.40276009)NSFC Project for Oversea Young Scientist Found(No.40028605).
文摘Based on the in situ XBT and other data sets, by analyzing the seasonal cycle of the mixed layer depth (MLD) and using the conservative potential vorticity (PV) as a tool, a clear description of the formation process of the North Pacific Subtropical Mode Water (NPSTMW) is presented for explaining the well known 'Stommel Demon'. The forming of NPSTMW reflects well the ventilation process of the isotherms of the permanent thermocline. The formation process can be divided into the 'ventilation' phase and the 'formation' phase. In the first phase (October-March), with large heat losses at the sea surface from October, the mixed layer deepens and correspondingly, the water mass with low PV emerges and sinks. After continual cooling from October to March, the mixed layer reaches its maximum value ( >300 m) in March. Then, in the second phase (April-June), the mixed layer shoals rapidly from April, a large part of the low PV water mass is sheltered from further air-sea interaction by the emerging seasonal thermocline, and thus forms new NPSTMW. Further analysis indicates that the formation region of warm NPSTMW (17-18℃) is limited between 140°-150°E, while the relatively cold NPSTMW (16-17℃) originates in a wider longitude range (140°-170°E).Climate features of NPSTMW are presented with the use of climatological Levitus (1994 a, b) dataset. It is shown that NPSTMW lies in the region of (130°-170°E, 22°-34°N) with core temperature ranging from about 16-19℃ and potential density around 25-25.8σθ NPSTMW has a three-dimensional structure lying below the seasonal thermocline (about 100 m deep) and reaches almost to 350m depths.
基金supported by a project of the National Key Research and Development Program of China [grant number2016YFA0602501]a project of the National Natural Science Foundation of China [grant numbers 41630532 and41575093]
文摘Nitrogen cycling has profound effects on carbon uptake in the terrestrial ecosystem and the response of the biosphere to climate changes.However,nutrient cycling is not taken into account in most land surface models for climate change.In this study,a nitrogen model,based on nitrogen transformation processes and nitrogen fluxes exchange between the atmosphere and terrestrial ecosystem,was incorporated into the Atmosphere–Vegetation Interaction Model(AVIM)to simulate the carbon cycle under nitrogen limitation.This new model,AVIM-CN,was evaluated against site-scale eddy covariance–based measurements of an alpine meadow located at Damxung station from the FLUXNET 2015 dataset.Results showed that the annual mean gross primary production simulated by AVIM-CN(0.7073 gC m^-2 d^-1)was in better agreement with the corresponding flux data(0.5407 gC m^-2 d^-1)than the original AVIM(1.1403 gC m^-2 d^-1)at Damxung station.Similarly,ecosystem respiration was also down-regulated,from 1.7695 gC m^-2 d^-1 to 1.0572 gC m^-2 d^-1,after the nitrogen processes were introduced,and the latter was closer to the observed vales(0.8034 gC m^-2 d^-1).Overall,the new results were more consistent with the daily time series of carbon and energy fluxes of observations compared to the former version without nitrogen dynamics.A model that does not incorporate the limitation effects of nitrogen nutrient availability will probably overestimate carbon fluxes by about 40%.
基金the Project of Outstanding Young University Teachers of Shanghai,No.03YQHB076. and R & D Fund of DonghuaUniversity
文摘Based on the Cluster Renewal Model of the particle motion in a CFB riser, a revised heat transfer model is developed, which introduces the latest research results of the hydrodynamics of the suspension flow in CFB. This model divides the heat transfer into two parts, which are due to the transient heat conduction by the covered clusters and the convection between the uncovered wall and the dispersed phase. Radiation at high temperature is regarded as being additive. The fraction of the covered wall by clusters is revised by a new formula, which is a function of the operating condition and the particle properties. The radiation between the dispersed phase and the uncovered wall includes not only the direct radiation to the uncovered wall, but also the radiation to the clusters and then reflected to the uncovered wall. Calculation was carried out for the CFB heat transfer model. The results were compared with the published typical experimental data of other researchers and showed a good agreement between them.
基金supported by the National Key Research and Development Program of China(2022YFC3201702)the National Natural Science Foundation of China(42201146,U2240226)+1 种基金the Science and Technology Project of Sichuan Province(2022NSFSC1001)Fundamental Research Funds for The Central Universities(YJ2021133).
文摘The accuracy of the simulation of carbon and water processes largely relies on the selection of atmospheric forcing datasets when driving land surface models(LSM).Particularly in high-altitude regions,choosing appropriate atmospheric forcing datasets can effectively reduce uncertainties in the LSM simulations.Therefore,this study conducted four offline LSM simulations over the Tibetan Plateau(TP)using the Community Land Model version 4.5(CLM4.5)driven by four state-of-the-art atmospheric forcing datasets.The performances of CRUNCEP(CLM4.5 model default)and three other reanalysis-based atmospheric forcing datasets(i.e.ITPCAS,GSWP3 and WFDEI)in simulating the net primary productivity(NPP)and actual evapotranspiration(ET)were evaluated based on in situ and gridded reference datasets.Compared with in situ observations,simulated results exhibited determination coefficients(R2)ranging from 0.58 to 0.84 and 0.59 to 0.87 for observed NPP and ET,respectively,among which GSWP3 and ITPCAS showed superior performance.At the plateau level,CRUNCEP-based simulations displayed the largest bias compared with the reference NPP and ET.GSWP3-based simulations demonstrated the best performance when comprehensively considering both the magnitudes and change trends of TP-averaged NPP and ET.The simulated ET increase over the TP during 1982-2010 based on ITPCAS was significantly greater than in the other three simulations and reference ET,suggesting that ITPCAS may not be appropriate for studying long-term ET changes over the TP.These results suggest that GSWP3 is recommended for driving CLM4.5 in conducting long-term carbon and water processes simulations over the TP.This study contributes to enhancing the accuracy of LSM in water-carbon simulations over alpine regions.
文摘Performance improvement of existing 200 litres capacity natural convection type domestic solar hot water system is attempted.A two-stage centrifugal pump driven by a vertical axis windmill having Savonius type rotor is added to the fluid loop.The windmill driven pump circulates the water through the collector.The system with necessary instrumentation is tested over a day.Tests on Natural Circulation System(NCS)mode and Wind Assisted System(WAS)mode are carried out during January,April,July and October,2009.Test results of a clear day are reported.Daily average efficiency of 25-28% during NCS mode and 33-37% during WAS mode are obtained.With higher wind velocities,higher collector flow rates and hence higher efficiencies are obtained.In general,WAS mode provides improvements in efficiency when compared to NCS mode.