Coccolithophorid is unicellular marine microalgae with a global distribution in temperate and sub-temperate oceanic regions and has the ability to produce 'the coccoliths'. It is considered to be the second most pro...Coccolithophorid is unicellular marine microalgae with a global distribution in temperate and sub-temperate oceanic regions and has the ability to produce 'the coccoliths'. It is considered to be the second most productive calcifying organism on earth and becoming an important factor in the global carbonate cycle. Emiliania huxleyi is one of the only two bloom-forming coccolithophores and becomes a species crucial to the study of global biogeochemical cycles and climate modeling. Coccolithoviruse is a recently discovered group of viruses infecting the marine coceolithophorid E. huxleyi. They are a major cause of coceolithophore bloom termination, and DMSP concentration is increasing in the process of viral lysis. Phylogenetic evidences support that some genes are functional both in E. huxleyi and its virus (EhV). Horizontal gene transfer (HGT) of multiple functionally coupled enzymes occurs in E. huxleyi and its DNA virus EhV has been confirmed, which contributes to the diversification and adaptation of plankton in the oceans and also critically regulates virus-host infection by allowing viruses to control host metabolic pathways for their repli- cation. Therefore, it is of particular interest to understand this host-virus interaction. On this issue, we have made a minireview of coeeolithoviruses focusing on the basic characteristics, phylogenesis, horizontal gene transfer and the interaction between the host and its viruses, as well as its important role in global biogeochemical cycling.展开更多
Brayton power cycles for fusion reactors have been investigated, using Helium in classical configurations and CO2 in a recompression layout. Thermal sources from the reactor have strongly constrained the cycle configu...Brayton power cycles for fusion reactors have been investigated, using Helium in classical configurations and CO2 in a recompression layout. Thermal sources from the reactor have strongly constrained the cycle configurations, hindering use of a recuperator in Helium cycles and conditioning the outlet turbine temperature in CO2 ones. In both cycles, it is possible to take advantage of the exhaust thermal energy by coupling the Brayton to a Rankine cycle, with an organic fluid in the helium case (iso-butane has been investigated) and steam in the CO2 case. The highest efficiency achieved with Helium cycle is 38.5% using Organic Rankine Cycle and 32.6% with Helium alone. The efficiency changes from 46.7% using Rankine cycle to 41% with CO2 alone. The Helium cycle is highly sensitive to turbine efficiency and in a moderate way to compressor efficiency and pressure drops, being nearly insensitive to thermal effectiveness in heat exchangers. On the other hand, CO2 is nearly insensitive to all the parameters.展开更多
In this paper, the dynamics of a stochastic model for algal bloom with nutrient recy- cling is investigated. The model incorporates a white noise term in the growth equation of algae population to describe the effects...In this paper, the dynamics of a stochastic model for algal bloom with nutrient recy- cling is investigated. The model incorporates a white noise term in the growth equation of algae population to describe the effects of random fluctuations in the environment, and a nutrient recycling term in the nutrient equation to account for the conversion of detritus into nutrient. The existence and uniqueness of the global positive solution of the model is first proved. Then we study the long-time behavior of the model. Conditions for the extinction and persistence in the mean of the algae population are established. By using the theory of integral Markov semigroups, we show that the model has an invari- ant and asymptotically stable density. Numerical simulations illustrate our theoretical results.展开更多
基金funded by the Chinese Public Science and Technology Research Funds Projects of Ocean (No. 201305027)the National Natural Science Foundation of China (Nos. 40930847, 41376119)+1 种基金Funds of China Southern Oceano-graphic Research Center (No. 14GZP71NF35)Funds of Provincial Key Laboratory of Food Microbiology and Enzyme Engineering (No. M20140910)
文摘Coccolithophorid is unicellular marine microalgae with a global distribution in temperate and sub-temperate oceanic regions and has the ability to produce 'the coccoliths'. It is considered to be the second most productive calcifying organism on earth and becoming an important factor in the global carbonate cycle. Emiliania huxleyi is one of the only two bloom-forming coccolithophores and becomes a species crucial to the study of global biogeochemical cycles and climate modeling. Coccolithoviruse is a recently discovered group of viruses infecting the marine coceolithophorid E. huxleyi. They are a major cause of coceolithophore bloom termination, and DMSP concentration is increasing in the process of viral lysis. Phylogenetic evidences support that some genes are functional both in E. huxleyi and its virus (EhV). Horizontal gene transfer (HGT) of multiple functionally coupled enzymes occurs in E. huxleyi and its DNA virus EhV has been confirmed, which contributes to the diversification and adaptation of plankton in the oceans and also critically regulates virus-host infection by allowing viruses to control host metabolic pathways for their repli- cation. Therefore, it is of particular interest to understand this host-virus interaction. On this issue, we have made a minireview of coeeolithoviruses focusing on the basic characteristics, phylogenesis, horizontal gene transfer and the interaction between the host and its viruses, as well as its important role in global biogeochemical cycling.
文摘Brayton power cycles for fusion reactors have been investigated, using Helium in classical configurations and CO2 in a recompression layout. Thermal sources from the reactor have strongly constrained the cycle configurations, hindering use of a recuperator in Helium cycles and conditioning the outlet turbine temperature in CO2 ones. In both cycles, it is possible to take advantage of the exhaust thermal energy by coupling the Brayton to a Rankine cycle, with an organic fluid in the helium case (iso-butane has been investigated) and steam in the CO2 case. The highest efficiency achieved with Helium cycle is 38.5% using Organic Rankine Cycle and 32.6% with Helium alone. The efficiency changes from 46.7% using Rankine cycle to 41% with CO2 alone. The Helium cycle is highly sensitive to turbine efficiency and in a moderate way to compressor efficiency and pressure drops, being nearly insensitive to thermal effectiveness in heat exchangers. On the other hand, CO2 is nearly insensitive to all the parameters.
基金This research is supported by the National Natural Science Foundation of China (11271260), Innovation Program of Shanghai Municipal Education Committee (13ZZ116), Shanghai Leading Academic Discipline Project (XTKX2012), Hujiang Foundation of China (B14005) and China Scholarship Council.
文摘In this paper, the dynamics of a stochastic model for algal bloom with nutrient recy- cling is investigated. The model incorporates a white noise term in the growth equation of algae population to describe the effects of random fluctuations in the environment, and a nutrient recycling term in the nutrient equation to account for the conversion of detritus into nutrient. The existence and uniqueness of the global positive solution of the model is first proved. Then we study the long-time behavior of the model. Conditions for the extinction and persistence in the mean of the algae population are established. By using the theory of integral Markov semigroups, we show that the model has an invari- ant and asymptotically stable density. Numerical simulations illustrate our theoretical results.