期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
基于空间域图像生成和混合卷积神经网络的配电网故障选线方法 被引量:2
1
作者 郭威 史运涛 《电网技术》 EI CSCD 北大核心 2024年第3期1311-1321,共11页
传统的配电网故障选线方法大多基于一维零序电流序列构建故障诊断模型,单一的诊断模型往往限制了故障特征的深层挖掘。为了提高故障选线的准确率,提出一种基于空间域图像和混合卷积神经网络的配电网故障选线方法。首先,利用优化的降噪... 传统的配电网故障选线方法大多基于一维零序电流序列构建故障诊断模型,单一的诊断模型往往限制了故障特征的深层挖掘。为了提高故障选线的准确率,提出一种基于空间域图像和混合卷积神经网络的配电网故障选线方法。首先,利用优化的降噪光滑模型对零序电流信号进行降噪处理,减少外界环境的电磁干扰。其次,利用对称希尔伯特变换将一维时域信号转成二维空间域图像,图像的颜色、形状和纹理特征能够充分反映当前系统的运行状态。最后,将一维时域信号和二维空间域图像同步作为混合卷积神经网络的输入,充分挖掘系统的故障特征,利用Sigmoid函数实现故障选线。在辐射状配电网、IEEE-13节点模型、IEEE-34节点、StarSim仿真平台上模型上进行了实验验证。实验结果表明,该选线方法可以有效克服传统方法过度依赖主观特征选择、抗噪性能差等问题,能够在高阻接地、采样时间不同步、两点接地故障等极端情况下可靠地筛选出故障线路。 展开更多
关键词 故障选线 对称希尔伯特变换 混合卷积神经网络 空间域图像生成 优化的降噪光滑模型
下载PDF
基于多种小波变换的一维卷积循环神经网络的风电机组轴承故障诊断 被引量:22
2
作者 陈维兴 崔朝臣 +1 位作者 李小菁 赵卉 《计量学报》 CSCD 北大核心 2021年第5期615-622,共8页
为解决在复杂工况下风力发电机组轴承故障诊断虚警率高的问题,提出一种端到端的混合深度学习框架——基于多种小波变换的一维卷积循环神经网络。首先,通过多种小波变换得到多个时-频矩阵,以充分提取信号特征;再通过一种扩展的LSTM,对多... 为解决在复杂工况下风力发电机组轴承故障诊断虚警率高的问题,提出一种端到端的混合深度学习框架——基于多种小波变换的一维卷积循环神经网络。首先,通过多种小波变换得到多个时-频矩阵,以充分提取信号特征;再通过一种扩展的LSTM,对多通道时-频矩阵不同时间步信息进行提取,捕获时-频数据时空特征;最后,通过全局池化层和分类层对故障状态进行分类。实验结果表明:在复杂工况下,多种小波变换的一维卷积循环神经网络对风力发电机组轴承故障识别率能够达到95%以上。 展开更多
关键词 计量学 滚动轴承 风力发电机组 故障诊断 多种小波变换 一维卷积循环神经网络
下载PDF
基于卷积神经网络与门控循环单元的气液两相流流型识别方法 被引量:7
3
作者 张立峰 王智 吴思橙 《计量学报》 CSCD 北大核心 2022年第10期1306-1312,共7页
提出了一种基于卷积神经网络(CNN)与门控循环单元(GRU)的垂直管道气液两相流流型识别方法。该方法基于电阻层析成像(ERT)系统的重建图像,对其填充处理后进行离散余弦变换(DCT),求取最大、最小DCT系数的差值,选取一定帧数长度数据作为网... 提出了一种基于卷积神经网络(CNN)与门控循环单元(GRU)的垂直管道气液两相流流型识别方法。该方法基于电阻层析成像(ERT)系统的重建图像,对其填充处理后进行离散余弦变换(DCT),求取最大、最小DCT系数的差值,选取一定帧数长度数据作为网络输入,对流型进行识别。分析了输入序列长度对CNN-GRU、CNN及GRU网络分类准确的影响,确定了最佳输入向量维度分别为60、65及50,使用实验数据对3种网络进行训练、测试,结果表明,CNN-GRU网络分类准确率最高,平均流型识别准确率可达99.40%。 展开更多
关键词 计量学 流型识别 离散余弦变换 卷积神经网络 门控循环单元 电阻层析成像
下载PDF
基于空间卷积神经网络模型的图像显著性检测 被引量:10
4
作者 高东东 张新生 《计算机工程》 CAS CSCD 北大核心 2018年第5期240-245,共6页
针对现有显著性检测方法鲁棒检测效果较差这一问题,提出一种新的基于空间卷积神经网络的显著性检测算法。利用去均值、归一化的预处理方法获取目标候选区。一方面通过引入卷积变换网络,建立提取显著物体上下文信息的全局模型,得到相应... 针对现有显著性检测方法鲁棒检测效果较差这一问题,提出一种新的基于空间卷积神经网络的显著性检测算法。利用去均值、归一化的预处理方法获取目标候选区。一方面通过引入卷积变换网络,建立提取显著物体上下文信息的全局模型,得到相应的目标检测信息显著图;另一方面构建特征子网络结构输出6维变换矩阵,经过空间变形模块改造输入图像,获取边缘信息。将空间变换网络输出的局部置信度融入到全局显著信息图,求取特征表达最大值,实现显著性与非显著性划分,完成显著性检测任务。实验结果表明,该算法不仅在同等条件下显著检测的AUC值得到了提高,并且生成的显著性图聚焦点突显,鲁棒检测效果得到明显改善。 展开更多
关键词 显著性检测 特征融合 卷积神经网络 空间变换网络 显著图
下载PDF
一种改进卷积循环神经网络的复杂场景下的车牌识别模型
5
作者 洪顺贺 胡宸滔 +1 位作者 铁治欣 丁成富 《建模与仿真》 2023年第3期2498-2504,共7页
识别自然场景图像中的汽车牌照是一项重要而又具有挑战性的任务。许多现有方法对于在固定场景下收集的牌照表现良好,但它们的性能在诸如车牌角度倾斜、光照强度过亮或过暗、图片模糊等复杂的环境中显著下降。本文提出了一种改进的卷积... 识别自然场景图像中的汽车牌照是一项重要而又具有挑战性的任务。许多现有方法对于在固定场景下收集的牌照表现良好,但它们的性能在诸如车牌角度倾斜、光照强度过亮或过暗、图片模糊等复杂的环境中显著下降。本文提出了一种改进的卷积循环神经网络车牌识别模型,在网络中加入幻影模块(Ghost Block)和卷积块注意模块(Convolutional Block Attention Module, CBAM),能够提高车牌字符特征提取的丰富程度的同时在通道和空间方向上对车牌字符特征进行加权,提高模型对车牌字符识别的准确率。最后通过实验验证了本文提出的模型的有效性。 展开更多
关键词 循环神经网络 车牌识别 车牌字符识别 自然场景图像 汽车牌照 复杂场景 空间方向 卷积
下载PDF
基于深度卷积神经网络的点云三维目标识别方法研究 被引量:4
6
作者 李豪杰 杨海清 《计算机测量与控制》 2022年第3期156-160,共5页
为了提高对三维点云目标的识别精确度,提出一种基于深度卷积神经网络(CNN,convolutional neural network)的点云目标识别模型;针对已有的深度卷积点云目标识别网络无法有效提取点云局部拓扑特征的问题,采用迭代最远点采样(FPS,terative ... 为了提高对三维点云目标的识别精确度,提出一种基于深度卷积神经网络(CNN,convolutional neural network)的点云目标识别模型;针对已有的深度卷积点云目标识别网络无法有效提取点云局部拓扑特征的问题,采用迭代最远点采样(FPS,terative farthest point sampling)结合方向卷积编码方式来捕获局部形状特征;并引入空间变换网络(STN,spatial transform network)使点云数据能够自适应进行空间变换和对齐,以解决点云数据旋转性会造成目标识别结果不稳定的问题;实验结果表明:文中提出的点云目标识别方法有效提高了识别精度度,相较于PointNet在ModelNet40和ShapeNetCore两个数据集上分别提高1.2%和1.4%。 展开更多
关键词 三维点云 目标识别 深度卷积神经网络 方向卷积编码 空间变换网络
下载PDF
基于可变形卷积神经网络的图像分类研究 被引量:6
7
作者 欧阳针 陈玮 《软件导刊》 2017年第6期198-201,共4页
卷积神经网络(Convolutional Neural Networks,CNNs)具有强大的特征自学习与抽象表达能力,在图像分类领域有着广泛应用。但是,各模块较为固定的几何结构完全限制了卷积神经网络对空间变换的建模,难以避免地受到数据空间多样性的影响。... 卷积神经网络(Convolutional Neural Networks,CNNs)具有强大的特征自学习与抽象表达能力,在图像分类领域有着广泛应用。但是,各模块较为固定的几何结构完全限制了卷积神经网络对空间变换的建模,难以避免地受到数据空间多样性的影响。在卷积网络中引入自学习的空间变换结构,或是引入可变形的卷积,使卷积核形状可以发生变化,以适应不同的输入特征图,丰富了卷积网络的空间表达能力。对现有卷积神经网络进行了改进,结果表明其在公共图像库和自建图像库上都表现出了更好的分类效果。 展开更多
关键词 卷积神经网络 图像分类 空间变换 可变形卷积
下载PDF
基于卷积神经网络的解扭曲车牌检测识别方法 被引量:7
8
作者 王昆 王晓峰 +1 位作者 刘轩 郝潇 《计算机工程与设计》 北大核心 2021年第11期3225-3231,共7页
为提高车牌检测与识别的适应性,增强系统性能,提出一种基于检测解扭曲-卷积神经网络(DU-CNN)方法。运用已有技术进行车辆检测;利用YOLO空间变换网络理念,提出一种变型的卷积神经网络DU-CNN,该网络学习对发生各种不同形变的车牌进行检测... 为提高车牌检测与识别的适应性,增强系统性能,提出一种基于检测解扭曲-卷积神经网络(DU-CNN)方法。运用已有技术进行车辆检测;利用YOLO空间变换网络理念,提出一种变型的卷积神经网络DU-CNN,该网络学习对发生各种不同形变的车牌进行检测,通过对仿射变化的系数进行回归,将发生形变的车牌重新解扭曲为接近正前方视角的矩形,通过光学字符识别(OCR)方法得到最终结果。为增强训练数据集,数据集由真实数据与人工合成数据混合组成。实验结果表明,所提方法具有较好的识别精度,在困难数据集中优于一些商用系统,稳定性较佳。 展开更多
关键词 车牌检测与识别 卷积神经网络 空间变换网络 解扭曲 光学字符识别
下载PDF
基于空间变换密集卷积网络的图片敏感文字识别 被引量:1
9
作者 林金朝 蔡元奇 +2 位作者 庞宇 杨鹏 张焱杰 《计算机系统应用》 2020年第1期137-143,共7页
互联网上含有大量多字体混合、形变、拉伸、左右结构字形、倾斜畸变等复杂场景下的敏感文字图片,在处理相关图片过程中存在特征提取难、识别率低的问题.本文提出基于空间变换网络与密集神经网络的方法对图片敏感文字进行特征提取与变换... 互联网上含有大量多字体混合、形变、拉伸、左右结构字形、倾斜畸变等复杂场景下的敏感文字图片,在处理相关图片过程中存在特征提取难、识别率低的问题.本文提出基于空间变换网络与密集神经网络的方法对图片敏感文字进行特征提取与变换矫正,使用了深层双向GRU网络与CTC时域连接网络对序列特征信息进行标记预测,序列化处理文本的方式可较好地提升距离较宽文字与模糊文字信息的处理能力.实验结果表明,本模型在Caffe-OCR中文合成数据集和CTW数据集中分别实现了87.0%和90.3%识别准确率,平均识别时间达到了26.3 ms/图. 展开更多
关键词 密集卷积神经网络 空间变换网络 深度双向门控循环单元 时间联结分类器
下载PDF
基于深度学习神经网络超参数优化的入库径流预测方法研究——以云南省暮底河水库为例 被引量:7
10
作者 陈金红 崔东文 《三峡大学学报(自然科学版)》 CAS 2023年第4期25-32,共8页
准确的入库日径流预测在水库优化调度中发挥着重要作用.为提高日径流预测精度,提出了基于小波包变换(WPT)并结合了白鲨优化(WSO)算法的门限循环控制单元(GRU)、长短期记忆神经网络(LSTM)、卷积神经网络(CNN)日径流时间序列预测模型,以... 准确的入库日径流预测在水库优化调度中发挥着重要作用.为提高日径流预测精度,提出了基于小波包变换(WPT)并结合了白鲨优化(WSO)算法的门限循环控制单元(GRU)、长短期记忆神经网络(LSTM)、卷积神经网络(CNN)日径流时间序列预测模型,以云南省暮底河水库2018—2020年入库日径流时间序列预测为例对各模型进行检验.首先利用WPT将日径流时序数据分解为若干子序列分量;其次引入WSO对GRU、LSTM、CNN超参数进行调优,建立WPT-WSO-GRU、WPT-WSO-LSTM、WPT-WSO-CNN模型;最后利用所建立的模型对各子序列分量进行预测及加和重构,并构建WPT-GRU、WPT-LSTM、WPT-CNN及基于BP神经网络的WPT-WSO-BP、WPT-BP作对比分析模型.结果表明:WPT-WSO-GRU、WPT-WSO-LSTM、WPT-WSO-CNN模型对实例日径流预测的平均绝对百分比误差EMAP分别为3.67%、5.52%、8.98%,平均绝对误差EMA分别为0.120、0.155、0.329 m^(3)/s,确定性系数DC分别为0.996 2、0.995 7、0.974 0 s,预报合格率RQ分别为98.1%、96.4%、89.6%,预测效果优于对应未经WSO调优的WPT-GRU、WPT-LSTM、WPT-CNN模型及WPT-WSO-BP、WPT-BP模型,其中WPT-WSO-GRU模型具有更高的预测精度和更好的泛化能力,WPT-WSO-LSTM模型次之.WSO能有效调优GRU、LSTM、CNN超参数,提高GRU、LSTM、CNN预测性能.WPT-WSO-GRU、WPT-WSO-LSTM模型在入库日径流时间序列预测研究中具有较好的应用前景. 展开更多
关键词 日径流预测 门限循环控制单元 长短期记忆神经网络 卷积神经网络 白鲨优化算法 小波包变换
下载PDF
基于两级神经网络的心音分割
11
作者 冯正伟 全海燕 《数据采集与处理》 CSCD 北大核心 2023年第4期849-859,共11页
心音信号是分析诊断心脏疾病的重要信号,而心音分割是对其进行分析处理之前必不可少的一步。本文通过将心音分割任务分离为定位与识别两个子任务,提出一种两级卷积神经网络,由定位网络和判别网络两级构成,分别完成心音信号的识别与定位... 心音信号是分析诊断心脏疾病的重要信号,而心音分割是对其进行分析处理之前必不可少的一步。本文通过将心音分割任务分离为定位与识别两个子任务,提出一种两级卷积神经网络,由定位网络和判别网络两级构成,分别完成心音信号的识别与定位。首先将原始信号通过滑动窗口进行分帧,然后通过短时傅里叶变换得到其频谱,再通过梅尔滤波器得到其梅尔频谱系数(Mel frequency spectral coefficient,MFSC)特征,输入第1个定位网络对其是否为心音段进行判断,如果是的话,再输入判别神经网络,识别第一心音与第二心音,从而实现心音的分割。最后利用多帧结果投票,减小误判。同时,在卷积神经网络中引入空间注意力机制,实验结果表明,这种加入了注意力机制的两级神经网络模型在心音分割任务上比使用单个卷积神经网络分类模型的准确率更高,也使得模型更加简单,轻量化。 展开更多
关键词 心音分割 短时傅里叶变换 梅尔倒谱 卷积神经网络 空间注意力机制
下载PDF
基于可分离卷积与小波变换融合的道路裂缝检测
12
作者 刘云清 吴越 +2 位作者 张琼 颜飞 陈姗姗 《计算机科学》 CSCD 北大核心 2024年第S02期304-312,共9页
针对目前对细小裂缝检测能力不强、分割精度低等问题,提出了一种改进的U-Net模型来检测路面裂缝,提高检测能力和分割精度。中文设计了新的模块MSDWBlock(Multi-Scale Depthwise Separable Convolutional Block),应用在编码器和解码器部... 针对目前对细小裂缝检测能力不强、分割精度低等问题,提出了一种改进的U-Net模型来检测路面裂缝,提高检测能力和分割精度。中文设计了新的模块MSDWBlock(Multi-Scale Depthwise Separable Convolutional Block),应用在编码器和解码器部分,通过深度可分离卷积增强模型的能力,扩大模型感受野,在跳跃连接部分引入了C2G注意力机制模块,提升模型对裂缝特征的感知能力;并引入了ASPP(Atrous Spatial Pyramid Pooling)和DWT(Discrete Wavelet Transformation)。ASPP通过在多个尺度上进行操作,有助于捕捉到裂缝的特征,而DWT能够减少卷积池化过程中的裂缝空间信息损失,保留裂缝边缘信息。这种结构设计使得网络更专注于裂缝的特征,从而提升了裂缝检测的准确性。通过实验证明所提模型显示出优于U-Net,Segnet,U2net等先进模型的精确性。在CFD数据集上mIoU,F1分别达到78.51%,0.868。这些成果表明,所提方法能有效提升道路裂缝检测的性能。 展开更多
关键词 裂缝检测 U-Net神经网络 深度可分离卷积 注意力机制 空间金字塔 小波变换
下载PDF
具有空间-通道重构卷积模块的肺音分类模型
13
作者 叶娜 吴辰文 蒋佳霖 《南方医科大学学报》 CAS CSCD 北大核心 2024年第9期1720-1728,共9页
目的探究肺音数据的准确识别及分类。方法本文提出了一种结合空间-通道重构卷积(SCConv)模块的卷积网络架构以及双可调Q因子小波变换(DTQWT)与三重Wigner-Ville变换(WVT)结合的肺音特征提取方法,通过自适应地聚焦于重要的通道和空间特征... 目的探究肺音数据的准确识别及分类。方法本文提出了一种结合空间-通道重构卷积(SCConv)模块的卷积网络架构以及双可调Q因子小波变换(DTQWT)与三重Wigner-Ville变换(WVT)结合的肺音特征提取方法,通过自适应地聚焦于重要的通道和空间特征,提高模型对肺音关键特征的捕捉能力。基于ICBHI2017数据集,进行正常音、哮鸣音、爆裂音、哮鸣音和爆裂音结合的分类。结果方法在分类的准确率、敏感性、特异性以及F1分数上分别达到85.68%、93.55%、86.79%、90.51%。结论所提方法在ICBHI 2017肺音数据库上取得了优异的性能,特别是在区分正常肺音和异常肺音方面。 展开更多
关键词 肺音分类 卷积神经网络 空间-通道重构卷积 双可调Q因子小波变换 三重Wigner-Ville变换
下载PDF
基于声谱图时间分辨率优化与残差空间金字塔网络的车辆识别
14
作者 刘伟娜 赵红东 +2 位作者 史剑锋 张学志 赵一鸣 《计算机工程》 CAS CSCD 北大核心 2024年第12期376-385,共10页
车辆分类是智能交通系统的关键技术之一,是道路交通监控系统的一个重要研究领域。由于声学传感器具有效率高、成本低、可昼夜工作、隐蔽性强等优势,因此基于车辆声音特征的车辆分类引起了研究人员的广泛关注。然而,现有研究中的车辆声... 车辆分类是智能交通系统的关键技术之一,是道路交通监控系统的一个重要研究领域。由于声学传感器具有效率高、成本低、可昼夜工作、隐蔽性强等优势,因此基于车辆声音特征的车辆分类引起了研究人员的广泛关注。然而,现有研究中的车辆声音信号仅包含单一车辆,对于混合的双车辆声音信号的分类缺乏讨论。为此,设计一种网络模型对单车辆和双车辆共12种类别的噪声信号进行分类。针对声音频谱特征的固定分辨率并非最优的问题,基于网络训练得出的注意力得分和时间转换矩阵,控制噪声频谱时间大小,设计频谱时间分辨率优化模型。分类网络依据卷积递归神经网络(CRNN)架构,卷积网络部分(多尺度信号分析模块)参考高效空间金字塔模块对特征进行双分支融合处理,由于循环神经网络(RNN)等不利于并行化,运算速度慢,因此将因果时间卷积网络(TCN)转换为非因果循环TCN。在自制数据集中进行实验,结果表明,该模型的平均精度均值(mAP)达到0.98,远高于相当参数量下的CRNN网络,与MobileNetV3性能相当,但是相比MobileNetV3参数量减少了1.7×10^(6)。分析结果表明,所提模型适用于长时间声音信号处理任务,能提取深层次的特征。 展开更多
关键词 车辆识别 声音信号重建 卷积循环神经网络 高效空间金字塔模块 时间卷积神经网络 时间分辨率优化
下载PDF
基于循环特性的均匀圆阵快速空间谱计算
15
作者 黄秀琼 郝克钢 +1 位作者 樊荣 万群 《电讯技术》 北大核心 2017年第12期1399-1403,共5页
针对在阵元数多、分辨率要求高的情况下,基于均匀圆阵的空间谱直接计算方法存在计算量大、实时性差的缺点,利用循环矩阵、离散傅里叶变换、卷积运算之间的内在联系,提出了一种快速空间谱计算方法。仿真结果表明,在保持测向性能完全一致... 针对在阵元数多、分辨率要求高的情况下,基于均匀圆阵的空间谱直接计算方法存在计算量大、实时性差的缺点,利用循环矩阵、离散傅里叶变换、卷积运算之间的内在联系,提出了一种快速空间谱计算方法。仿真结果表明,在保持测向性能完全一致的情况下,所提快速算法降低空间谱计算过程中角度搜索阶段的计算量随阵元数增加而增加;且在相同计算量条件下,所提快速算方法可以用于更高精度和分辨率的角度搜索。 展开更多
关键词 均匀圆阵 空间谱估计 循环矩阵 离散傅里叶变换 卷积运算
下载PDF
三分支空间变换注意力机制的图像匹配算法 被引量:3
16
作者 黄妍妍 盖绍彦 达飞鹏 《系统工程与电子技术》 EI CSCD 北大核心 2023年第11期3363-3373,共11页
对于待匹配图像具有旋转、缩放、平移等空间几何变换的图像模板匹配任务,现有的算法耗时较长,且准确率不高。针对该问题提出一种高准确率、低运算成本的图像匹配算法,首先根据中心点与邻域点的像素差来寻找特征点,进行快速特征检测,然... 对于待匹配图像具有旋转、缩放、平移等空间几何变换的图像模板匹配任务,现有的算法耗时较长,且准确率不高。针对该问题提出一种高准确率、低运算成本的图像匹配算法,首先根据中心点与邻域点的像素差来寻找特征点,进行快速特征检测,然后以这些特征点为中心,并以快速特征检测所计算出来的旋转角截取出一定尺寸的图像块。再将这些图像块输入空间变换注意力模块的特征描述子提取网络,最后使用K最邻近算法计算两张待匹配图像特征描述子中匹配的特征。特征描述子提取网络中引入了空间变换注意力模块,网络在训练的时候着重对空间信息进行学习,故所提算法提高了具有较大空间变化图像匹配任务的准确率。在匹配时间方面,所提的匹配算法仅次于检测和匹配都使用快速特征检测算法的方法。在匹配准确率方面,所提算法匹配的准确率远远优于实验所比较的其他算法。 展开更多
关键词 计算机视觉 图像匹配 空间变换不变性 卷积神经网络 注意力机制
下载PDF
基于去模糊空间变换RCNN的毫米波图像目标检测(英文) 被引量:6
17
作者 梁广宇 程良伦 +1 位作者 黄国恒 徐利民 《光子学报》 EI CAS CSCD 北大核心 2020年第2期188-198,共11页
提出一种包含去模糊的空间变换区域卷积神经网络的目标检测算法.首先,基于主动毫米波圆柱扫描成像原理对人体进行三维成像(频率24~30 GHz),建立毫米波图像数据集.然后,估计毫米波图像的模糊核,通过卷积去噪网络获得图像先验知识,将其集... 提出一种包含去模糊的空间变换区域卷积神经网络的目标检测算法.首先,基于主动毫米波圆柱扫描成像原理对人体进行三维成像(频率24~30 GHz),建立毫米波图像数据集.然后,估计毫米波图像的模糊核,通过卷积去噪网络获得图像先验知识,将其集成到半二次分裂的优化方法中,以实现非盲目去模糊.最后,由定位网络、网格生成器和采样网络三部分组成空间变换网络,将它融入到特征提取网络中,在去模糊后实现目标检测.通过该非盲目去模糊算法得到的图像的峰值信噪比可达27.49 dB,目标检测算法的平均精度可达80.9%.实验结果表明,与现有的先进方法相比,该方法可以有效地提高图像质量和检测精度,为毫米波图像中隐藏危险品的目标检测提供了新的技术支持. 展开更多
关键词 安全检测 毫米波图像 目标检测 空间变换区域卷积神经网络 非盲目去模糊
下载PDF
基于深度循环卷积模型的非侵入式负荷分解方法 被引量:8
18
作者 余登武 刘敏 《电测与仪表》 北大核心 2020年第23期47-53,共7页
电力分项计算是智能电能表的一个重要环节,即对接入户线的各个电器设备进行用电消耗检测。对电力公司进行精准预测,提高系统稳定性可靠性,制定调度方案,设计“错峰用电”费率结构,发现设备老化和故障有着重要意义。为了实现电力分项计算... 电力分项计算是智能电能表的一个重要环节,即对接入户线的各个电器设备进行用电消耗检测。对电力公司进行精准预测,提高系统稳定性可靠性,制定调度方案,设计“错峰用电”费率结构,发现设备老化和故障有着重要意义。为了实现电力分项计算,文中提出了一种基于深度循环卷积神经网络的非侵入式负荷分解方法。对目标电器的不同功率状态进行编码,用循环卷积神经网络提取输入负荷总功率的空间时间特征。对输入数据进行归一化提高模型训练速度,用drouput技术降低模型过拟合,用迁移学习技术实现对不同目标电器的功率状态预测建模。并和传统的隐马尔可夫模型进行对比。采用公开的redd数据集,结果证明文中所提出的模型能很好预测目标电器的功率状态。 展开更多
关键词 电力分项计算 错峰用电 循环卷积神经网络 非侵入式负荷分解 空间时间特征 drouput 迁移学习 隐马尔可夫模型
下载PDF
基于时空图注意力网络的超短期区域负荷预测 被引量:3
19
作者 赵紫昱 陈渊睿 +2 位作者 陈霆威 刘俊峰 曾君 《电力系统自动化》 EI CSCD 北大核心 2024年第12期147-155,共9页
目前,空间负荷预测研究对复杂时空关系的考虑不足。为此,文中提出一种基于多维、多源特征的区域级负荷超短期时空预测模型。首先,根据已有的区域级负荷进行元胞划分,构建考虑元胞相关性的图拓扑。其次,分别通过图注意力网络、一维卷积... 目前,空间负荷预测研究对复杂时空关系的考虑不足。为此,文中提出一种基于多维、多源特征的区域级负荷超短期时空预测模型。首先,根据已有的区域级负荷进行元胞划分,构建考虑元胞相关性的图拓扑。其次,分别通过图注意力网络、一维卷积神经网络和门控循环单元,从空间、特征和时间维度提取有效特征,连接全连接层输出结果。最后,基于美国新英格兰地区的真实电力负荷数据进行仿真验证,并提取模型注意力权重,分析元胞之间的空间依赖性。结果表明,所提模型相比传统模型在不同预测步长上均具有更高的预测精度和稳定性,有效挖掘了区域级负荷的空间依赖性。 展开更多
关键词 负荷预测 负荷空间分布 卷积神经网络 门控循环单元 注意力机制 可解释性
下载PDF
基于卷积神经网络的遥感图像目标检测 被引量:31
20
作者 欧攀 张正 +1 位作者 路奎 刘泽阳 《激光与光电子学进展》 CSCD 北大核心 2019年第5期66-72,共7页
针对遥感图像中的目标检测问题,采用基于卷积神经网络的目标检测框架对目标进行提取,针对该网络制作了包含三类遥感图像中常见目标的目标检测数据集。为了解决遥感图像目标旋转角度较大的问题,将空间变换网络融入超快区域卷积神经网络,... 针对遥感图像中的目标检测问题,采用基于卷积神经网络的目标检测框架对目标进行提取,针对该网络制作了包含三类遥感图像中常见目标的目标检测数据集。为了解决遥感图像目标旋转角度较大的问题,将空间变换网络融入超快区域卷积神经网络,提出了一种具有旋转不变性自学习能力的目标检测模型。通过与传统的目标检测方法进行对比分析,探究了不同方法对遥感图像目标检测的实际效果。相对于传统的目标检测方法,融合了空间变换网络的卷积神经网络所提取的特征具有更好的旋转不变特性,从而能够达到更高的检测精度。 展开更多
关键词 图像处理 卷积神经网络 空间变换网络 目标检测 深度学习
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部