We develop the semi-closed orbit theory from two degrees of freedom to three non-separable degrees of freedom and put forward a new model potential for the Li Rydberg atom, which reduces the study of the system to an ...We develop the semi-closed orbit theory from two degrees of freedom to three non-separable degrees of freedom and put forward a new model potential for the Li Rydberg atom, which reduces the study of the system to an effective one-particle problem. Using this model potential and the closed orbit theory for three degrees of freedom, we caiculate the recurrence spectra of Li Rydberg atom in perpendicular electric and magnetic fields. The closed orbits in the corresponding classicai system have also been obtained. The Fourier transformed spectra of Li atom have ailowed direct comparison between the resonance peaks and the scaied action values of closed orbits, whereas the nonhydrogenic resonance can be explained in terms of the new orbits created by the core scattering. Our result is in good agreement with the quantum spectra, which suggests that our calculation is correct.展开更多
Multielectron to theoretical treatments atoms near a metal surface are essentially more complicated than hydrogen atom with regard By using the semicalssical dosed orbit theory generalized to the multielecton atoms, w...Multielectron to theoretical treatments atoms near a metal surface are essentially more complicated than hydrogen atom with regard By using the semicalssical dosed orbit theory generalized to the multielecton atoms, we study the dynamical properties of the Rydberg lithium atom near a metal surface. The photoabsorption spectra and recurrence spectra of this system have also been calculated. Considering the effect of the ionic core potential of the Rydberg lithium atom, the number of the closed orbits increases, which leads to more peaks in the recurrence spectra than the case of hydrogen atom near a metal surface. This result shows that the core-scattered effects play an important role in nonhydrogenic atoms. This study is a new application of the closed-orbit theory and is of potential experimental interest.展开更多
基金The project supported by National Natural Science Foundation of China under Grant No. 10374061 and the Doctoral Research Foundation of Ludong University under Grant No. 202-23000301
文摘We develop the semi-closed orbit theory from two degrees of freedom to three non-separable degrees of freedom and put forward a new model potential for the Li Rydberg atom, which reduces the study of the system to an effective one-particle problem. Using this model potential and the closed orbit theory for three degrees of freedom, we caiculate the recurrence spectra of Li Rydberg atom in perpendicular electric and magnetic fields. The closed orbits in the corresponding classicai system have also been obtained. The Fourier transformed spectra of Li atom have ailowed direct comparison between the resonance peaks and the scaied action values of closed orbits, whereas the nonhydrogenic resonance can be explained in terms of the new orbits created by the core scattering. Our result is in good agreement with the quantum spectra, which suggests that our calculation is correct.
基金National Natural Science Foundation of China under Grant No.10604045the Doctoral Scientific Research Startup Foundation of Ludong University under Grant No.202-23000301
文摘Multielectron to theoretical treatments atoms near a metal surface are essentially more complicated than hydrogen atom with regard By using the semicalssical dosed orbit theory generalized to the multielecton atoms, we study the dynamical properties of the Rydberg lithium atom near a metal surface. The photoabsorption spectra and recurrence spectra of this system have also been calculated. Considering the effect of the ionic core potential of the Rydberg lithium atom, the number of the closed orbits increases, which leads to more peaks in the recurrence spectra than the case of hydrogen atom near a metal surface. This result shows that the core-scattered effects play an important role in nonhydrogenic atoms. This study is a new application of the closed-orbit theory and is of potential experimental interest.