A superamphiphobic(SAP)surface was fabricated by electrodepositing Cu-Ni micro-nano particles on aluminum substrate and modifying via 1 H,1 H,2 H,2 Hperfluorodecyltrimethoxysilane.Scanning electron microscopy,X-ray di...A superamphiphobic(SAP)surface was fabricated by electrodepositing Cu-Ni micro-nano particles on aluminum substrate and modifying via 1 H,1 H,2 H,2 Hperfluorodecyltrimethoxysilane.Scanning electron microscopy,X-ray diffraction,energydispersive X-ray spectroscopy,and Fourier-transform infrared spectroscopy were employed to investigate the morphology and chemical composition.The results showed that the SAP surface had three-dimensional micro-nano structures and exhibited a maximum water contact angle of 160.0°,oil contact angle of 151.6°,a minimum water slide angle of 0°and oil slide angle of 9°.The mechanical strength and chemical stability of the SAP surface were tested further.The experimental results showed that the SAP surface presented excellent resistance to wear,prominent acid-resistance and alkali-resistance,self-cleaning and anti-fouling properties.展开更多
文摘以铝片为基底,采用溶胶凝胶法,制备疏水防腐涂层。以纳米Ti O2和聚二甲基硅氧烷为原料,通过硬脂酸使纳米Ti O2表面由亲水性变成疏水性,然后将改性后的Ti O2与聚二甲基硅氧烷复合,经机械共混、热处理、浸渍提拉等过程,形成超疏水防腐涂层。涂层表面形貌和疏水性采用X射线衍射仪、傅里叶红外光谱仪、扫描电镜、接触角分析仪等进行表征。结果表明,复合涂层表面具有微/纳米双重粗糙结构,与水的静态接触角为155°,滚动角8°;采用极化曲线和交流阻抗等电化学法对涂层防腐性能进行表征,结果表明,其腐蚀电位较纯聚二甲基硅氧烷涂层正移0.2 V,而相比裸铝片,腐蚀电位从-926 m V正移至-525 m V,腐蚀电流密度从4.68×10-5A/cm2下降至5.69×10-6A/cm2。
基金supported by Science and Technology Department of Sichuan Province(2017JZ0021,2017SZ0039)Education Department of Sichuan Province(17ZA0298)Innovative Training Program for College Students of Sichuan Province(No.201810626118)。
文摘A superamphiphobic(SAP)surface was fabricated by electrodepositing Cu-Ni micro-nano particles on aluminum substrate and modifying via 1 H,1 H,2 H,2 Hperfluorodecyltrimethoxysilane.Scanning electron microscopy,X-ray diffraction,energydispersive X-ray spectroscopy,and Fourier-transform infrared spectroscopy were employed to investigate the morphology and chemical composition.The results showed that the SAP surface had three-dimensional micro-nano structures and exhibited a maximum water contact angle of 160.0°,oil contact angle of 151.6°,a minimum water slide angle of 0°and oil slide angle of 9°.The mechanical strength and chemical stability of the SAP surface were tested further.The experimental results showed that the SAP surface presented excellent resistance to wear,prominent acid-resistance and alkali-resistance,self-cleaning and anti-fouling properties.