In the purple hilly region, erosions and landslides are all serious, and it is of great scientific value and practical significance to study their formation mechanism and distribution features there. In this paper, so...In the purple hilly region, erosions and landslides are all serious, and it is of great scientific value and practical significance to study their formation mechanism and distribution features there. In this paper, soil micromorphological methods and techniques were used to study the erosion zonal distribution in the region. The results indicated: (1) According to erosion process, the spacial distribution zones of the erosions and landslides in the purple hilly region with different solums were divided into scouring erosion zone, transport-diffusion zone, rocks and soil turbulence zone and sediment-bury zone; (2) The soil micromorphologic taxonomic feature identifying different erosion-landslide zone were found by studying the soil micromorphology of erosive zone in purple hilly region; (3) As for the erosion–landslide formation in the region, besides the external factors, the internal factors were found more important and favorable for landslide formation through the studies on the micormorphological features of slide soil.展开更多
The microscopic morphology and pore structure characteristics of concrete with composite admixtures(fly ash and mineral powder) after chlorine salt erosion were analyzed via scanning electron microscopy(SEM) and mercu...The microscopic morphology and pore structure characteristics of concrete with composite admixtures(fly ash and mineral powder) after chlorine salt erosion were analyzed via scanning electron microscopy(SEM) and mercury injection porosimetry(MIP), providing the basis for the design and maintenance of concrete shafts in coal mines. The above-mentioned characteristics were compared with the macroscopic characteristic of concrete fractures under uniaxial compression. The results show that the macroscopic fracture characteristics of concrete under uniaxial compression change from longitudinal split fracture and oblique section shear fracture to conjugate cant fracture, and the degree of breakage increases.Interface cracks, cement paste cracks, spherical surface cracks, and aggregate cracks appear in concrete under uniaxial compression. In the early stages of corrosion, the original cracks which are obvious are repaired. When the corrosion becomes more serious, cement paste cracks appear, and the number of harmful holes increases while the number of harmless holes decreases. This study also reveals the relationship between the macroscopic properties and microscopic structure of concrete under chloride salt erosion. Finally, the paper preliminarily discussed the relationship between the macroscopic properties and mesoscopic characteristics of concrete under chlorine salt erosion.展开更多
基金supported by the Knowledge Innovation Project of the Chinese Academy of Sciences(KZCX3-SW-330)the State Natural Science Foundation for Outstanding Personnel of China(40025103)
文摘In the purple hilly region, erosions and landslides are all serious, and it is of great scientific value and practical significance to study their formation mechanism and distribution features there. In this paper, soil micromorphological methods and techniques were used to study the erosion zonal distribution in the region. The results indicated: (1) According to erosion process, the spacial distribution zones of the erosions and landslides in the purple hilly region with different solums were divided into scouring erosion zone, transport-diffusion zone, rocks and soil turbulence zone and sediment-bury zone; (2) The soil micromorphologic taxonomic feature identifying different erosion-landslide zone were found by studying the soil micromorphology of erosive zone in purple hilly region; (3) As for the erosion–landslide formation in the region, besides the external factors, the internal factors were found more important and favorable for landslide formation through the studies on the micormorphological features of slide soil.
基金The authors gratefully acknowledge the financial support for this work,provided by the Outstanding Youth Science Foundation of China(No.51322401)the Key Project of Chinese National Programs for Fundamental Research and Development of China(No.2015CB251601)+1 种基金the Science and Technology Project of the Chinese Ministry of Housing and Urban-Rural Construction of China(Nos.2013-K4-22 and 2014-K4-042)the General Program of Chinese National Building Materials Industry Technology Innovation Program of China(Nos.2014-M5-1 and 2014-M5-2)
文摘The microscopic morphology and pore structure characteristics of concrete with composite admixtures(fly ash and mineral powder) after chlorine salt erosion were analyzed via scanning electron microscopy(SEM) and mercury injection porosimetry(MIP), providing the basis for the design and maintenance of concrete shafts in coal mines. The above-mentioned characteristics were compared with the macroscopic characteristic of concrete fractures under uniaxial compression. The results show that the macroscopic fracture characteristics of concrete under uniaxial compression change from longitudinal split fracture and oblique section shear fracture to conjugate cant fracture, and the degree of breakage increases.Interface cracks, cement paste cracks, spherical surface cracks, and aggregate cracks appear in concrete under uniaxial compression. In the early stages of corrosion, the original cracks which are obvious are repaired. When the corrosion becomes more serious, cement paste cracks appear, and the number of harmful holes increases while the number of harmless holes decreases. This study also reveals the relationship between the macroscopic properties and microscopic structure of concrete under chloride salt erosion. Finally, the paper preliminarily discussed the relationship between the macroscopic properties and mesoscopic characteristics of concrete under chlorine salt erosion.