The effects of forging parameters on the deformation and microstructure distributions of as-forged straight spur gears wereinvestigated by finite element(FE)simulation and statistical analysis method.Spur gear forging...The effects of forging parameters on the deformation and microstructure distributions of as-forged straight spur gears wereinvestigated by finite element(FE)simulation and statistical analysis method.Spur gear forging using the movable cavity die designwas investigated by integrating the FE method with the microstructure evolution models for AZ31B magnesium alloys.The requiredinputs such as flow stress curves and microstructure evolution models,were obtained through the Gleeble thermal mechanical testingand quantitative metallography analysis method.Numerical simulation and experimental examination confirm that both thedeformation and microstructure are non-uniformly distributed in the as-forged gears.Decreasing deformation temperature orincreasing strain rate is beneficial to obtaining fine-grained microstructure but is harmful to the uniformity in deformation ormicrostructure.The level of the non-uniformity results from the complex shape of gear and the friction between the billet and dies,which is closely associated with the characteristics of flow stress curve.展开更多
基金Project(51675335)supported by the National Natural Science Foundation of ChinaProject(BK20130447)supported by the Natural Science Foundation of Jiangsu Province,China
文摘The effects of forging parameters on the deformation and microstructure distributions of as-forged straight spur gears wereinvestigated by finite element(FE)simulation and statistical analysis method.Spur gear forging using the movable cavity die designwas investigated by integrating the FE method with the microstructure evolution models for AZ31B magnesium alloys.The requiredinputs such as flow stress curves and microstructure evolution models,were obtained through the Gleeble thermal mechanical testingand quantitative metallography analysis method.Numerical simulation and experimental examination confirm that both thedeformation and microstructure are non-uniformly distributed in the as-forged gears.Decreasing deformation temperature orincreasing strain rate is beneficial to obtaining fine-grained microstructure but is harmful to the uniformity in deformation ormicrostructure.The level of the non-uniformity results from the complex shape of gear and the friction between the billet and dies,which is closely associated with the characteristics of flow stress curve.