Surface modification of medical implants was considered as an effective method to improve the cellular behaviors and the integration of tissue onto materials. The micro-nanostructured surface on the titanium alloy was...Surface modification of medical implants was considered as an effective method to improve the cellular behaviors and the integration of tissue onto materials. The micro-nanostructured surface on the titanium alloy was prepared by laser treatment and multiple acid etching. The surface morphologies of different titanium alloy substrates were characterized by scanning electron microscopy (SEM). The effects of micro-nanostructured surfaces on the cellular responses were investigated in vitro by observing hydroxyapatite formation, cell morphology and cell adhesion. The results indicate that the micro-sized structure promoted the adhesion and proliferation of cultured osteoblasts. Furthermore, the micro-nanostructured surface was more conducive to cell adhension stretching compared with the micro-structured surface. All results suggest that the micro-nanostructured surface improved the biocompatibility and integration of tissue onto titanium alloy implants.展开更多
The chlorophyll fluorescence parameters of Kobresia humilis Serg. and Polygonum viviparum L. grown at two different altitudes (3?200 m, 3?980 m) were measured and the ultrastructure of chloroplasts were observ...The chlorophyll fluorescence parameters of Kobresia humilis Serg. and Polygonum viviparum L. grown at two different altitudes (3?200 m, 3?980 m) were measured and the ultrastructure of chloroplasts were observed for studying the photosynthetic adaptability of plants to the influences of stress conditions in alpine environment. Rfd _values, the vitality index, in leaves of K. humilis and P.viviparum grown at 3?980 m were higher than those at 3?200 m. The higher ratio of F v/F o and F v/F m in leaves of K. humilis and P.viviparum indicated that the rate of photosynthetic conversion of light energy increased at higher altitude. Ratios of F v/F o and F v/F m and Rfd _values in K.humilis were higher than that in P.viviparum grown at the same altitude. There were more irregular chloroplasts in leaves of both species grown at higher altitude. Many irregular chloroplasts such as swollen thylakoid, deformed chloroplast envelope, were observed in P.viviparum grown at 3?980 m, but few in K. humilis . These results were discussed in relation to the photosynthetic adaptability of alpine plants and the different adaptive competence between K.humilis and P.viviparum .展开更多
The molecular structure of liquid water has been an outstanding issue for many years. The identification of free -OH holds the key in differentiating structure models for liquid water. By analyzing the relative change...The molecular structure of liquid water has been an outstanding issue for many years. The identification of free -OH holds the key in differentiating structure models for liquid water. By analyzing the relative changes of the intensity and depolarization ratio in temperature dependent Raman spectra, the occurrence of free -OH in liquid water is unambiguously de- termined. Furthermore, upon the increase of temperature from 5 ~C to 85 ~C, the structure of liquid water undergoes significant change, but the relative proportion of free -OH is con- siderably small and remains almost unchanged. This implies that the breaking of hydrogen bond from the tetrahedral structure prefers to The energetic favoring of the structural change experiments. occur at the site of the hydrogen acceptor. for liquid water is thus clearly revealed from展开更多
The precise design and fabrication of biomaterial scaffolds is necessary to provide a systematic study for bone tissue engineering. Biomaterial scaffolds should have sufficient stiffness and large porosity. These two ...The precise design and fabrication of biomaterial scaffolds is necessary to provide a systematic study for bone tissue engineering. Biomaterial scaffolds should have sufficient stiffness and large porosity. These two goals generally contradict since larger porosity results in lower mechanical properties. To seek the microstructure of maximum stiffness with the constraint of volume fraction by topology optimization method, algorithms and programs were built to obtain 2D and 3D optimized microstructure and then they were transferred to CAD models of STL format. Ti scaffolds with 30% volume fraction were fabricated using a selective laser melting (SLM) technology. The architecture and pore shape in the metallic biomaterial scaffolds were relatively precise reproduced and the minimum mean pore size was 231μm. The accurate fabrication of intricate microstructure has verified that the SLM process is suitable for fabrication of metallic biomaterial scaffolds.展开更多
Series of TiO 2-ZnO heterojunction composite films with different n(Zn)/n(Ti) ratios were prepared by UDP450 magnetron sputter ion plating equipment, and the mole ratio of Zn to Ti was controlled by adjusting the ...Series of TiO 2-ZnO heterojunction composite films with different n(Zn)/n(Ti) ratios were prepared by UDP450 magnetron sputter ion plating equipment, and the mole ratio of Zn to Ti was controlled by adjusting the current values of sputtering target. The effects of n(Zn)/n(Ti) on the microstructures of TiO2-ZnO films were investigated by SEM, AFM, Raman and XPS, and their photocatalytic decomposition of methyl orange solutions was evaluated. The results show that an increase in n(Zn)/n(Ti) typically results in a decrease in the grain size of composite films firstly and then an increase of grain size, while an increase in n(Zn)/n(Ti) leads to an increase in film roughness firstly and then a decrease in film roughness. Both grain size and roughness of TiO2-ZnO films reach the maximum and minimum at n(Zn)/n(Ti) of 1/9.3, respectively. The n(Zn)/n(Ti) shows little effect on the valences of Zn and Ti elements, which mainly exist in the form of TiO2 and ZnO phases. The n(Zn)/n(Ti) has influence on the amount of anatase/rutile TiO2 heterojunction in the film. With increase of the n(Zn)/n(Ti), the absorption intensity of the composite film increases and the absorption region extends to 450 nm, which is redshifted as much as 150 nm in comparison with the pure TiO2 films. However, the photocatalytic abilities of heterogeneous composite films do not depend on the n(Zn)/n(Ti) but rather on the microstructures of the TiO2-ZnO composite films. Degradation rate of the film reaches the maximum and the photocatalytic decomposition of pollutants works best when n(Zn)/n(Ti)=1:9.3.展开更多
Leaves from three_year_old solar greenhouse nectarine trees ( Prunus persica L. var. nectarina Ait. “Zao Hong Yan”) were used as materials in this study. It was the first time that the ultrastructural charact...Leaves from three_year_old solar greenhouse nectarine trees ( Prunus persica L. var. nectarina Ait. “Zao Hong Yan”) were used as materials in this study. It was the first time that the ultrastructural characteristics of phloem tissues of source leaves were observed and compared in normal and weak light intensities using the transmission electron microscopy. Results showed that the average diameters of companion cells (CC) and sieve elements (SE) of all kinds of veins were bigger in normal than that in weak light intensity, indicating that light could influence the cell development and growth. Dense cytoplasm with abundant mitochondria, endoplasmic reticulums, multivesicular bodies, vesicles and plastids were observed in normal light intensity. On the contrary, CC with small vacuolar structures and few mitochondrias, endoplasmic reticulums were shown in weak light. Misalignment of grana thylakoid margins of nectarine leaves also was seen in weak light. The sieve pores of SEs were obstructed in weak light. Chloroplasts with numerous starch grains and few mitochondrias were noticed in the mesophyll cell (MES) surrounding the bundle sheath in weak light. The storage of starch grains appeared to result from an unbalance between photosynthate production and export of photosynthates. This observation provided a strong support to the point that most leaves export the most of assimilates in the light time. Plasmodesmal densities between SE/CC, CC/PP (phloem parenchyma cell), PP/PP and PP/BSC (bundle_sheath cell) decreased in weak light. Plasmodesmata were observed between CC/SE (NS) (nacreous_walled sieve element), PP/BSC in branch veins in normal light intensity, but not in weak light. Thus apoplasmic pathway may be the main mode of transport of assimilates in weak light, however symplasmic pathway may be the main mode of transport of assimilates in normal light intensity. These results demonstrated that the solar greenhouse nectarine trees could be adapted to the weak light via the ultrastructure variation of phloem tissues of the source leaves.展开更多
Wheat ( Triticum aestivum L.) plants were grown under ambient and doubled_CO 2(plus 350 μL/L) concentration in cylindrical open_top chamber to examine their effects on the ultrastructure, supramolecular architect...Wheat ( Triticum aestivum L.) plants were grown under ambient and doubled_CO 2(plus 350 μL/L) concentration in cylindrical open_top chamber to examine their effects on the ultrastructure, supramolecular architecture, absorption spectrum and low temperature (77 K) fluorescence emission spectrum of the chloroplasts from wheat leaves. The results were briefly summarized as follows: (1) The wheat leaves possessed normally developed chloroplasts with intact grana and stroma thylakoid membranes; The grana intertwined with stroma thylakoid membranes and increased slightly in stacking degree and the width of granum, in spite of more accumulated starch grains within the chloroplasts than those in control; (2) The particle density in the stacked region of the endoplasmic fracture face (EFs) and protoplasmic fracture face (PFs) and in the unstacked region the endoplasmic fracture face (EFu) and the protoplasmic fracture face (PFu) was significantly higher than that of control. Furthermore, in some cases many more particles on EFs faces of thylakoid membranes appeared as a paracrystalline particle array; (3) The variations in the structure of chloroplasts were consistent with the absorption spectra and the low temperature (77 K) fluorescence emission spectra of the chloroplasts developed under the doubled_CO 2 concentration. Results indicate that the capability of light energy absorption of chloroplasts and regulative capability of excitation energy distribution between PSⅡ and PSⅠ were raised by doubled_CO 2 concentration. This is very favorable for final productivity of wheat.展开更多
The characters and ultrastructure of the intercellular connection were revealed in the outer epidermis of the garlic clove sheath by means of fluorescent probe TRITC_Phalloidin (TRITC_Ph) labeling combined with confoc...The characters and ultrastructure of the intercellular connection were revealed in the outer epidermis of the garlic clove sheath by means of fluorescent probe TRITC_Phalloidin (TRITC_Ph) labeling combined with confocal laser scanning microscopy (CLSM), immuno_gold labeling and transmission electron microscopy. These results show that transcellular channel is a complex of rod_like cytoplasm channel and grouped plasmodesmata (PDs) in pit. The former remains a portion of the cell protoplast. The diameter of PD is normally 60-70 nm. The PDs are the real intercellular symplasmic connections of the cells. The transcellular fibers labeled with the TRITC_Ph obviously become narrow in the primary pit fields, which is the same as the characters observed under the electron microscope. The bright fluorescent spot in the primary wall reflects the grouped PDs in pit, and hence the presence of F_actin in the PDs can be confirmed. In immuno_gold labeling experiment, a lot of gold particles were massively distributed in the rod_like cytoplasm channel and grouped PDs. The result provides effective support that these fluorescent filaments possibly are the existing form of F_actin.展开更多
Microstructure of GaAs/SiO 2 nanogranular thin films fabricated by radio frequency magnetron co sputtering technique and postannealing are investigated via atomic force microscope,X ray diffraction,and Rutherford b...Microstructure of GaAs/SiO 2 nanogranular thin films fabricated by radio frequency magnetron co sputtering technique and postannealing are investigated via atomic force microscope,X ray diffraction,and Rutherford backscattering spectroscopy.The results show that GaAs nanocrystals with average diameters from 1 5nm to 3 2nm (depending on the annealing temperature) are uniformly dispersed in the SiO 2 matrices.GaAs and SiO 2 are found in normal stoichiometry in the films.The nonlinear optical refraction and nonlinear optical absorption are studied by Z scan technique using a single Gaussian beam of pulse laser.The third order nonlinear optical refractive index and nonlinear absorption coefficient are enhanced due to the quantum confinement effects and estimated to be 4×10 -12 m 2/W and 2×10 -5 m/W respectively in nonresonant condition,while 2×10 -11 m 2/W and -1×10 -4 m/W respectively in quasi resonant condition.展开更多
Novel 2×2 torsion-mirror optical switch arrays are fabricated by using the mixed micromachining based on the surface and bulk silicon microelectronics,then are investigated electromechanically in applied direct a...Novel 2×2 torsion-mirror optical switch arrays are fabricated by using the mixed micromachining based on the surface and bulk silicon microelectronics,then are investigated electromechanically in applied direct and alternating electric fields.When the thickness of the elastic torsion beams suspending the aluminum coated polysilicon micro-mirrors of the switches in the arrays is about 1μm,the electrostatic yielding voltages for driving the mirrors to achieve their ON-state are in the range of 270~290V,and the minimum holding voltages for mirrors ON-state are found as 55V or so.Theoretical analysis manifests that the yielding voltage is more sensitive to beam thickness than other design parameters do about the torsion-mirror switch structures.The lifetime can reach 10 8 times.The estimated shortest switching time of the switches at least lasts for less than 2ms.The force analysis on the two kinds of new fiber self-holding structures integrated monolithically in the chip of the optical switch arrays indicates that the structures can feature self-fixing and self-aligning of optical fibers.展开更多
In this paper,the experiment on an all-optical switching is reported based on a microstructure fiber(MF)- nonlinear optical loop mirror(NOLM). In the experiment, a 25-meter-long MF( γ = 36W^-1 km^-1@ 1 550 nm) ...In this paper,the experiment on an all-optical switching is reported based on a microstructure fiber(MF)- nonlinear optical loop mirror(NOLM). In the experiment, a 25-meter-long MF( γ = 36W^-1 km^-1@ 1 550 nm) is used as a nonlinear medium of the nonlinear optical loop mirror and the input signal is generated by a 10 GHz tunable picosecond laser source,with a full-width at half-maximum (FWHM) of 2 ps and centered at 1 550 nm. With the increase of input power,a π nonlinear phase shift is obtained by a 40/60 coupler in the experiment,but the same result can not be found by a 48/52 coupler. Additionally,the switching devices can also be used as an all-optical regeneration.展开更多
Based on the harmonic vibration equation, the relationship between IR characteristic peak of fiberglass and Si-O-Si bond angle was deduced, and 1 100 cm^-1 characteristic peak was specifically studied. It is found tha...Based on the harmonic vibration equation, the relationship between IR characteristic peak of fiberglass and Si-O-Si bond angle was deduced, and 1 100 cm^-1 characteristic peak was specifically studied. It is found that 1 100 cm^-1 characteristic peak shifts to higher wave number when Si-O-Si bond angle increases. Taking fused biconical taper (FBT) coupler as an example, the microstructures of the fiber coupler manufactured at different draw- ing speeds were tested with micro infrared spectrum. According to the test results, it is found that the bond angle at the taper region is the largest, the one at the fused region is the second largest, and the one of bare fiber is the smal- lest. The characteristic peaks of fused-taper region shift to higher wave number when drawing speed increases.展开更多
A series of BiOX(X=Cl,Br) were prepared by simple hydrolysis and then calcined at various temperatures and they were characterized by XRD,Raman,SEM,DSC-TGA,BET and UV-Vis.The photocatalytic activity was evaluated by p...A series of BiOX(X=Cl,Br) were prepared by simple hydrolysis and then calcined at various temperatures and they were characterized by XRD,Raman,SEM,DSC-TGA,BET and UV-Vis.The photocatalytic activity was evaluated by photocatalytic degradation of methyl orange(MO) solution under simulated solar light irradiation.The results show that the phase structure,crystallite size,morphology,specific surface area,porous structure,and the absorption band-edges are related to the calcination temperature.For BiOBr,it has completely transformed to Bi24O31Br10 at 600℃ and begins to transform to Bi2 O3 at 800℃.As for BiOCl,it begins to transform to Bi24O31Cl10 at 600℃ and completely transforms to Bi24O31Cl10 at 800℃.Finally,the photocatalytic activity of BiOCl decreases with the temperature increasing owing to decrease of the specific surface areas and pore size,while the photocatalytic activity of BiOBr increases in the first stage and then decreases,which is related to good crystallization and three-dimensional structure.展开更多
An unique mask moving method is developed for forming effective micro-optical structures with continuous profile. The mechanism for forming different micro-optical profiles is disclosed, and the designed approach for ...An unique mask moving method is developed for forming effective micro-optical structures with continuous profile. The mechanism for forming different micro-optical profiles is disclosed, and the designed approach for binary moving mask is described. Finally some concrete micro-optical components with typical microstructures are presented for demonstrating the validity of the method.展开更多
Lymphocystis nodules occurring in the cultured sting fish Sebastes schlegeli were observed under light and electron microscope. Lymphocystis disease virus (LCDV) in the tissues of diseased fish was detected with indir...Lymphocystis nodules occurring in the cultured sting fish Sebastes schlegeli were observed under light and electron microscope. Lymphocystis disease virus (LCDV) in the tissues of diseased fish was detected with indirect immunofluorescence test (IFAT). Results showed that lymphocystis cells had overly irregular nuclei, basophilic intracytoplasmic inclusion bodies with virions budding from the surface, and hyaline capsules outside the cell membrane. Numerous virus particles about 200 nm in diameter scat- tered in the cytoplasm, electron-dense particles 70-80 nm in diameter filled in perinuclear cisterna, and membrane-enveloped parti- cles with electron-dense core of 70-80 nm appeared around cellular nucleus. IFAT using monoclonal antibody against LCDV from Paralichthys olivaceus revealed that specific green fluorescence was present in the cytoplasm of lymphocystis cells, epithelium of stomach, gill lamellae, and muscular fibers under epidermis of S. schlegeli, just as that in the cytoplasm of lymphocystis cells of P. olivaceus, suggesting the presence of LCDV in these tissues.展开更多
基金Projects(5117530651575320)supported by the National Natural Science Foundation of China+1 种基金Project(TS20130922)supported by the Taishan Scholar Foundation,ChinaProject(2014JC020)supported by the Fundamental Research Funds for the Central Universities of China
文摘Surface modification of medical implants was considered as an effective method to improve the cellular behaviors and the integration of tissue onto materials. The micro-nanostructured surface on the titanium alloy was prepared by laser treatment and multiple acid etching. The surface morphologies of different titanium alloy substrates were characterized by scanning electron microscopy (SEM). The effects of micro-nanostructured surfaces on the cellular responses were investigated in vitro by observing hydroxyapatite formation, cell morphology and cell adhesion. The results indicate that the micro-sized structure promoted the adhesion and proliferation of cultured osteoblasts. Furthermore, the micro-nanostructured surface was more conducive to cell adhension stretching compared with the micro-structured surface. All results suggest that the micro-nanostructured surface improved the biocompatibility and integration of tissue onto titanium alloy implants.
文摘The chlorophyll fluorescence parameters of Kobresia humilis Serg. and Polygonum viviparum L. grown at two different altitudes (3?200 m, 3?980 m) were measured and the ultrastructure of chloroplasts were observed for studying the photosynthetic adaptability of plants to the influences of stress conditions in alpine environment. Rfd _values, the vitality index, in leaves of K. humilis and P.viviparum grown at 3?980 m were higher than those at 3?200 m. The higher ratio of F v/F o and F v/F m in leaves of K. humilis and P.viviparum indicated that the rate of photosynthetic conversion of light energy increased at higher altitude. Ratios of F v/F o and F v/F m and Rfd _values in K.humilis were higher than that in P.viviparum grown at the same altitude. There were more irregular chloroplasts in leaves of both species grown at higher altitude. Many irregular chloroplasts such as swollen thylakoid, deformed chloroplast envelope, were observed in P.viviparum grown at 3?980 m, but few in K. humilis . These results were discussed in relation to the photosynthetic adaptability of alpine plants and the different adaptive competence between K.humilis and P.viviparum .
基金This work is supported by the National Key Basic Research Special Foundation (No.2010CB923300), the National Natural Science Foundation of China (No.20925311, No.91127042, and No.21103158), and the GSran Gustafsson Foundation for Research in Natural Sciences and Medicine.
文摘The molecular structure of liquid water has been an outstanding issue for many years. The identification of free -OH holds the key in differentiating structure models for liquid water. By analyzing the relative changes of the intensity and depolarization ratio in temperature dependent Raman spectra, the occurrence of free -OH in liquid water is unambiguously de- termined. Furthermore, upon the increase of temperature from 5 ~C to 85 ~C, the structure of liquid water undergoes significant change, but the relative proportion of free -OH is con- siderably small and remains almost unchanged. This implies that the breaking of hydrogen bond from the tetrahedral structure prefers to The energetic favoring of the structural change experiments. occur at the site of the hydrogen acceptor. for liquid water is thus clearly revealed from
基金Project (51275179) supported by the National Natural Science Foundation of ChinaProject (2010A090200072) supported by Industry,University and Research Institute Combination of Ministry of Education, Ministry of Science and Technology and Guangdong Province,China+1 种基金Project (2012M511797) supported by China Postdoctoral Science FoundationProject (2012ZB0014) supported by FundamentalResearch Funds for the Central Universities of China
文摘The precise design and fabrication of biomaterial scaffolds is necessary to provide a systematic study for bone tissue engineering. Biomaterial scaffolds should have sufficient stiffness and large porosity. These two goals generally contradict since larger porosity results in lower mechanical properties. To seek the microstructure of maximum stiffness with the constraint of volume fraction by topology optimization method, algorithms and programs were built to obtain 2D and 3D optimized microstructure and then they were transferred to CAD models of STL format. Ti scaffolds with 30% volume fraction were fabricated using a selective laser melting (SLM) technology. The architecture and pore shape in the metallic biomaterial scaffolds were relatively precise reproduced and the minimum mean pore size was 231μm. The accurate fabrication of intricate microstructure has verified that the SLM process is suitable for fabrication of metallic biomaterial scaffolds.
基金Project (2010JQ6008) supported by the Natural Science Foundation of Shaanxi Province,China
文摘Series of TiO 2-ZnO heterojunction composite films with different n(Zn)/n(Ti) ratios were prepared by UDP450 magnetron sputter ion plating equipment, and the mole ratio of Zn to Ti was controlled by adjusting the current values of sputtering target. The effects of n(Zn)/n(Ti) on the microstructures of TiO2-ZnO films were investigated by SEM, AFM, Raman and XPS, and their photocatalytic decomposition of methyl orange solutions was evaluated. The results show that an increase in n(Zn)/n(Ti) typically results in a decrease in the grain size of composite films firstly and then an increase of grain size, while an increase in n(Zn)/n(Ti) leads to an increase in film roughness firstly and then a decrease in film roughness. Both grain size and roughness of TiO2-ZnO films reach the maximum and minimum at n(Zn)/n(Ti) of 1/9.3, respectively. The n(Zn)/n(Ti) shows little effect on the valences of Zn and Ti elements, which mainly exist in the form of TiO2 and ZnO phases. The n(Zn)/n(Ti) has influence on the amount of anatase/rutile TiO2 heterojunction in the film. With increase of the n(Zn)/n(Ti), the absorption intensity of the composite film increases and the absorption region extends to 450 nm, which is redshifted as much as 150 nm in comparison with the pure TiO2 films. However, the photocatalytic abilities of heterogeneous composite films do not depend on the n(Zn)/n(Ti) but rather on the microstructures of the TiO2-ZnO composite films. Degradation rate of the film reaches the maximum and the photocatalytic decomposition of pollutants works best when n(Zn)/n(Ti)=1:9.3.
文摘Leaves from three_year_old solar greenhouse nectarine trees ( Prunus persica L. var. nectarina Ait. “Zao Hong Yan”) were used as materials in this study. It was the first time that the ultrastructural characteristics of phloem tissues of source leaves were observed and compared in normal and weak light intensities using the transmission electron microscopy. Results showed that the average diameters of companion cells (CC) and sieve elements (SE) of all kinds of veins were bigger in normal than that in weak light intensity, indicating that light could influence the cell development and growth. Dense cytoplasm with abundant mitochondria, endoplasmic reticulums, multivesicular bodies, vesicles and plastids were observed in normal light intensity. On the contrary, CC with small vacuolar structures and few mitochondrias, endoplasmic reticulums were shown in weak light. Misalignment of grana thylakoid margins of nectarine leaves also was seen in weak light. The sieve pores of SEs were obstructed in weak light. Chloroplasts with numerous starch grains and few mitochondrias were noticed in the mesophyll cell (MES) surrounding the bundle sheath in weak light. The storage of starch grains appeared to result from an unbalance between photosynthate production and export of photosynthates. This observation provided a strong support to the point that most leaves export the most of assimilates in the light time. Plasmodesmal densities between SE/CC, CC/PP (phloem parenchyma cell), PP/PP and PP/BSC (bundle_sheath cell) decreased in weak light. Plasmodesmata were observed between CC/SE (NS) (nacreous_walled sieve element), PP/BSC in branch veins in normal light intensity, but not in weak light. Thus apoplasmic pathway may be the main mode of transport of assimilates in weak light, however symplasmic pathway may be the main mode of transport of assimilates in normal light intensity. These results demonstrated that the solar greenhouse nectarine trees could be adapted to the weak light via the ultrastructure variation of phloem tissues of the source leaves.
文摘Wheat ( Triticum aestivum L.) plants were grown under ambient and doubled_CO 2(plus 350 μL/L) concentration in cylindrical open_top chamber to examine their effects on the ultrastructure, supramolecular architecture, absorption spectrum and low temperature (77 K) fluorescence emission spectrum of the chloroplasts from wheat leaves. The results were briefly summarized as follows: (1) The wheat leaves possessed normally developed chloroplasts with intact grana and stroma thylakoid membranes; The grana intertwined with stroma thylakoid membranes and increased slightly in stacking degree and the width of granum, in spite of more accumulated starch grains within the chloroplasts than those in control; (2) The particle density in the stacked region of the endoplasmic fracture face (EFs) and protoplasmic fracture face (PFs) and in the unstacked region the endoplasmic fracture face (EFu) and the protoplasmic fracture face (PFu) was significantly higher than that of control. Furthermore, in some cases many more particles on EFs faces of thylakoid membranes appeared as a paracrystalline particle array; (3) The variations in the structure of chloroplasts were consistent with the absorption spectra and the low temperature (77 K) fluorescence emission spectra of the chloroplasts developed under the doubled_CO 2 concentration. Results indicate that the capability of light energy absorption of chloroplasts and regulative capability of excitation energy distribution between PSⅡ and PSⅠ were raised by doubled_CO 2 concentration. This is very favorable for final productivity of wheat.
文摘The characters and ultrastructure of the intercellular connection were revealed in the outer epidermis of the garlic clove sheath by means of fluorescent probe TRITC_Phalloidin (TRITC_Ph) labeling combined with confocal laser scanning microscopy (CLSM), immuno_gold labeling and transmission electron microscopy. These results show that transcellular channel is a complex of rod_like cytoplasm channel and grouped plasmodesmata (PDs) in pit. The former remains a portion of the cell protoplast. The diameter of PD is normally 60-70 nm. The PDs are the real intercellular symplasmic connections of the cells. The transcellular fibers labeled with the TRITC_Ph obviously become narrow in the primary pit fields, which is the same as the characters observed under the electron microscope. The bright fluorescent spot in the primary wall reflects the grouped PDs in pit, and hence the presence of F_actin in the PDs can be confirmed. In immuno_gold labeling experiment, a lot of gold particles were massively distributed in the rod_like cytoplasm channel and grouped PDs. The result provides effective support that these fluorescent filaments possibly are the existing form of F_actin.
文摘Microstructure of GaAs/SiO 2 nanogranular thin films fabricated by radio frequency magnetron co sputtering technique and postannealing are investigated via atomic force microscope,X ray diffraction,and Rutherford backscattering spectroscopy.The results show that GaAs nanocrystals with average diameters from 1 5nm to 3 2nm (depending on the annealing temperature) are uniformly dispersed in the SiO 2 matrices.GaAs and SiO 2 are found in normal stoichiometry in the films.The nonlinear optical refraction and nonlinear optical absorption are studied by Z scan technique using a single Gaussian beam of pulse laser.The third order nonlinear optical refractive index and nonlinear absorption coefficient are enhanced due to the quantum confinement effects and estimated to be 4×10 -12 m 2/W and 2×10 -5 m/W respectively in nonresonant condition,while 2×10 -11 m 2/W and -1×10 -4 m/W respectively in quasi resonant condition.
文摘Novel 2×2 torsion-mirror optical switch arrays are fabricated by using the mixed micromachining based on the surface and bulk silicon microelectronics,then are investigated electromechanically in applied direct and alternating electric fields.When the thickness of the elastic torsion beams suspending the aluminum coated polysilicon micro-mirrors of the switches in the arrays is about 1μm,the electrostatic yielding voltages for driving the mirrors to achieve their ON-state are in the range of 270~290V,and the minimum holding voltages for mirrors ON-state are found as 55V or so.Theoretical analysis manifests that the yielding voltage is more sensitive to beam thickness than other design parameters do about the torsion-mirror switch structures.The lifetime can reach 10 8 times.The estimated shortest switching time of the switches at least lasts for less than 2ms.The force analysis on the two kinds of new fiber self-holding structures integrated monolithically in the chip of the optical switch arrays indicates that the structures can feature self-fixing and self-aligning of optical fibers.
基金This workis supported by the National Basic Research Programof China(2003CB314900) ,the Key grant Project of Chinese Min-istry of Education ( NO.104046) and the National 863 HighTechnology Project of China (2003AA311010)
文摘In this paper,the experiment on an all-optical switching is reported based on a microstructure fiber(MF)- nonlinear optical loop mirror(NOLM). In the experiment, a 25-meter-long MF( γ = 36W^-1 km^-1@ 1 550 nm) is used as a nonlinear medium of the nonlinear optical loop mirror and the input signal is generated by a 10 GHz tunable picosecond laser source,with a full-width at half-maximum (FWHM) of 2 ps and centered at 1 550 nm. With the increase of input power,a π nonlinear phase shift is obtained by a 40/60 coupler in the experiment,but the same result can not be found by a 48/52 coupler. Additionally,the switching devices can also be used as an all-optical regeneration.
基金Project(50235040) supported bythe National Natural Science Foundation of China project(NCET-040753) supported bythe New Century Excellent Talents in University project(20050533037) supported by the research fund for the Doctoral Program ofHigher Education
文摘Based on the harmonic vibration equation, the relationship between IR characteristic peak of fiberglass and Si-O-Si bond angle was deduced, and 1 100 cm^-1 characteristic peak was specifically studied. It is found that 1 100 cm^-1 characteristic peak shifts to higher wave number when Si-O-Si bond angle increases. Taking fused biconical taper (FBT) coupler as an example, the microstructures of the fiber coupler manufactured at different draw- ing speeds were tested with micro infrared spectrum. According to the test results, it is found that the bond angle at the taper region is the largest, the one at the fused region is the second largest, and the one of bare fiber is the smal- lest. The characteristic peaks of fused-taper region shift to higher wave number when drawing speed increases.
基金Projects(21676178,21506144,21706179)supported by the National Natural Science Foundation of ChinaProject(2019L0138)supported by the Science and Technology Innovation Program of Higher Education Institutions in Shanxi Province,ChinaProject(201901D211100)supported by the Natural Science Foundation of Shanxi Province for Young Scientists,China
文摘A series of BiOX(X=Cl,Br) were prepared by simple hydrolysis and then calcined at various temperatures and they were characterized by XRD,Raman,SEM,DSC-TGA,BET and UV-Vis.The photocatalytic activity was evaluated by photocatalytic degradation of methyl orange(MO) solution under simulated solar light irradiation.The results show that the phase structure,crystallite size,morphology,specific surface area,porous structure,and the absorption band-edges are related to the calcination temperature.For BiOBr,it has completely transformed to Bi24O31Br10 at 600℃ and begins to transform to Bi2 O3 at 800℃.As for BiOCl,it begins to transform to Bi24O31Cl10 at 600℃ and completely transforms to Bi24O31Cl10 at 800℃.Finally,the photocatalytic activity of BiOCl decreases with the temperature increasing owing to decrease of the specific surface areas and pore size,while the photocatalytic activity of BiOBr increases in the first stage and then decreases,which is related to good crystallization and three-dimensional structure.
文摘An unique mask moving method is developed for forming effective micro-optical structures with continuous profile. The mechanism for forming different micro-optical profiles is disclosed, and the designed approach for binary moving mask is described. Finally some concrete micro-optical components with typical microstructures are presented for demonstrating the validity of the method.
基金This work was supported by National Natural Science Foundation of China (No. 30271016)the National High Technology Development Program of China (863) (No. 2006AA100306).
文摘Lymphocystis nodules occurring in the cultured sting fish Sebastes schlegeli were observed under light and electron microscope. Lymphocystis disease virus (LCDV) in the tissues of diseased fish was detected with indirect immunofluorescence test (IFAT). Results showed that lymphocystis cells had overly irregular nuclei, basophilic intracytoplasmic inclusion bodies with virions budding from the surface, and hyaline capsules outside the cell membrane. Numerous virus particles about 200 nm in diameter scat- tered in the cytoplasm, electron-dense particles 70-80 nm in diameter filled in perinuclear cisterna, and membrane-enveloped parti- cles with electron-dense core of 70-80 nm appeared around cellular nucleus. IFAT using monoclonal antibody against LCDV from Paralichthys olivaceus revealed that specific green fluorescence was present in the cytoplasm of lymphocystis cells, epithelium of stomach, gill lamellae, and muscular fibers under epidermis of S. schlegeli, just as that in the cytoplasm of lymphocystis cells of P. olivaceus, suggesting the presence of LCDV in these tissues.