This paper give the algebraic criteria for all delay stability of two dimensional degenerate differential systems with delays and give two examples to illustrate the use of them.
This paper is concerned with the order of the solutions of systems of high-order complex algebraic differential equations.By means of Zalcman Lemma,the systems of equations of[1]is extended to more general form.
Semi-tensor product of matrices is a generalization of conventional matrix product for the case when the two factor matrices do not meet the dimension matching condition. It was firstly proposed about ten years ago. S...Semi-tensor product of matrices is a generalization of conventional matrix product for the case when the two factor matrices do not meet the dimension matching condition. It was firstly proposed about ten years ago. Since then it has been developed and applied to several different fields. In this paper we will first give a brief introduction. Then give a survey on its applications to dynamic systems, to logic, to differential geometry, to abstract algebra, respectively.展开更多
A robust nonlinear control method is presented for spacecraft precise formation flying.With the constraint forces and consid-ering nonlinearity and perturbations,the problem of the formation keeping is changed to the ...A robust nonlinear control method is presented for spacecraft precise formation flying.With the constraint forces and consid-ering nonlinearity and perturbations,the problem of the formation keeping is changed to the Lagrange systems with the holonomic constraints and the differential algebraic equations (DAE).The nonlinear control laws are developed by solving the DAE.Because the traditional numerical solving methods of DAE are very sensitive to the various errors and the resulting con-trol laws are not robust in engineering application,the robust control law designed method is further developed by designing the correct coefficients to correct the errors of the formation array constraints.A numeral study simulated the robustness of this method for the various errors in the formation flying mission,including the initial errors of spacecraft formation,the reference satellite orbit determination errors,the relative perturbation forces model errors,and so on.展开更多
We propose a new family of interconnection networks (WGn^m) with regular degree three. When the generator set is chosen properly, they are isomorphic to Cayley graphs on the wreath product Zm ~ Sn. In the case of m...We propose a new family of interconnection networks (WGn^m) with regular degree three. When the generator set is chosen properly, they are isomorphic to Cayley graphs on the wreath product Zm ~ Sn. In the case of m ≥ 3 and n ≥3, we investigate their different algebraic properties and give a routing algorithm with the diameter upper bounded by [m/2](3n^2- 8n + 4) - 2n + 1. The connectivity and the optimal fault tolerance of the proposed networks are also derived. In conclusion, we present comparisons of some familiar networks with constant degree 3.展开更多
The multiple exp-function method is a new approach to obtain multiple wave solutions of nonlinear partial differential equations (NLPDEs). By this method one can obtain multi-soliton solutions of NLPDEs. In this paper...The multiple exp-function method is a new approach to obtain multiple wave solutions of nonlinear partial differential equations (NLPDEs). By this method one can obtain multi-soliton solutions of NLPDEs. In this paper, using computer algebra systems, we apply the multiple exp-function method to construct the exact multiple wave solutions of a (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Also, we extend the equation to a (3+1)-dimensional case and obtain some exact solutions for the new equation by applying the multiple exp-function method. By these applications, we obtain single-wave, double-wave and multi-wave solutions for these equations.展开更多
This paper deals with the existence of Darboux first integrals for the planar polynomial differential systems x=x-y+P n+1(x,y)+xF2n(x,y),y=x+y+Q n+1(x,y)+yF2n(x,y),where P i(x,y),Q i(x,y)and F i(x,y)are homogeneous po...This paper deals with the existence of Darboux first integrals for the planar polynomial differential systems x=x-y+P n+1(x,y)+xF2n(x,y),y=x+y+Q n+1(x,y)+yF2n(x,y),where P i(x,y),Q i(x,y)and F i(x,y)are homogeneous polynomials of degree i.Within this class,we identify some new Darboux integrable systems having either a focus or a center at the origin.For such Darboux integrable systems having degrees 5and 9 we give the explicit expressions of their algebraic limit cycles.For the systems having degrees 3,5,7 and 9and restricted to a certain subclass we present necessary and sufficient conditions for being Darboux integrable.展开更多
文摘This paper give the algebraic criteria for all delay stability of two dimensional degenerate differential systems with delays and give two examples to illustrate the use of them.
基金Supported by the Natural Science Foundation of Guangdong Province(04010474) Supported by the Foundation of the Education Department of Anhui Province for Outstanding Young Teachers in University(2011SQRL172)
文摘This paper is concerned with the order of the solutions of systems of high-order complex algebraic differential equations.By means of Zalcman Lemma,the systems of equations of[1]is extended to more general form.
基金Supported partly by National Natural Science Foundation of China under Grant No. 60221301 and 60334040 .Dedicated to Academician Han-Fu Chen on the occasion of his 70th birthday.
文摘Semi-tensor product of matrices is a generalization of conventional matrix product for the case when the two factor matrices do not meet the dimension matching condition. It was firstly proposed about ten years ago. Since then it has been developed and applied to several different fields. In this paper we will first give a brief introduction. Then give a survey on its applications to dynamic systems, to logic, to differential geometry, to abstract algebra, respectively.
基金supported by the China Postdoctoral Foundation (Grant Nos. 20080440217, 200902666)
文摘A robust nonlinear control method is presented for spacecraft precise formation flying.With the constraint forces and consid-ering nonlinearity and perturbations,the problem of the formation keeping is changed to the Lagrange systems with the holonomic constraints and the differential algebraic equations (DAE).The nonlinear control laws are developed by solving the DAE.Because the traditional numerical solving methods of DAE are very sensitive to the various errors and the resulting con-trol laws are not robust in engineering application,the robust control law designed method is further developed by designing the correct coefficients to correct the errors of the formation array constraints.A numeral study simulated the robustness of this method for the various errors in the formation flying mission,including the initial errors of spacecraft formation,the reference satellite orbit determination errors,the relative perturbation forces model errors,and so on.
基金This work was partly supported by the Natural Science Foundation of Fujian Education Ministry under Grant No.JB05333
文摘We propose a new family of interconnection networks (WGn^m) with regular degree three. When the generator set is chosen properly, they are isomorphic to Cayley graphs on the wreath product Zm ~ Sn. In the case of m ≥ 3 and n ≥3, we investigate their different algebraic properties and give a routing algorithm with the diameter upper bounded by [m/2](3n^2- 8n + 4) - 2n + 1. The connectivity and the optimal fault tolerance of the proposed networks are also derived. In conclusion, we present comparisons of some familiar networks with constant degree 3.
基金the financial support from NBHM, India in the form of major research project, BRNS, India in the form of Young Scientist Research Award
文摘The multiple exp-function method is a new approach to obtain multiple wave solutions of nonlinear partial differential equations (NLPDEs). By this method one can obtain multi-soliton solutions of NLPDEs. In this paper, using computer algebra systems, we apply the multiple exp-function method to construct the exact multiple wave solutions of a (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Also, we extend the equation to a (3+1)-dimensional case and obtain some exact solutions for the new equation by applying the multiple exp-function method. By these applications, we obtain single-wave, double-wave and multi-wave solutions for these equations.
基金supported by National Natural Science Foundation of China (Grant No. 11271252)Ministerio de Economiay Competitidad of Spain (Grant No. MTM2008-03437)+2 种基金 Agència de Gestió d’Ajuts Universitaris i de Recerca of Catalonia (Grant No. 2009SGR410)ICREA Academia,Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110073110054)a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme (Grant Nos. FP7-PEOPLE-2012-IRSES-316338 and 318999)
文摘This paper deals with the existence of Darboux first integrals for the planar polynomial differential systems x=x-y+P n+1(x,y)+xF2n(x,y),y=x+y+Q n+1(x,y)+yF2n(x,y),where P i(x,y),Q i(x,y)and F i(x,y)are homogeneous polynomials of degree i.Within this class,we identify some new Darboux integrable systems having either a focus or a center at the origin.For such Darboux integrable systems having degrees 5and 9 we give the explicit expressions of their algebraic limit cycles.For the systems having degrees 3,5,7 and 9and restricted to a certain subclass we present necessary and sufficient conditions for being Darboux integrable.