期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于近红外光谱和BYOL对比学习的烟叶部位识别方法 被引量:1
1
作者 杨德建 赵辽英 +2 位作者 郝贤伟 毕一鸣 厉小润 《中国烟草学报》 CAS CSCD 北大核心 2023年第6期23-30,共8页
【背景和目的】烟叶部位识别对卷烟制品的配方设计与质量监控具有重要意义。利用近红外光谱(NIR)分析可以实现烟叶部位的快速、无损在线识别。针对烟叶光谱特征提取困难问题,利用具有强特征提取的BYOL模型,提出NIR-BYOL烟叶部位识别方... 【背景和目的】烟叶部位识别对卷烟制品的配方设计与质量监控具有重要意义。利用近红外光谱(NIR)分析可以实现烟叶部位的快速、无损在线识别。针对烟叶光谱特征提取困难问题,利用具有强特征提取的BYOL模型,提出NIR-BYOL烟叶部位识别方法。【方法】通过微分光谱融合实现数据增强,利用卷积自编码器和多层感知器实现BYOL的在线网络和目标网络,以在线网络和目标网络输出的均方误差为损失函数,通过损失最小优化的编码值,提取的特征经SVM分类识别烟叶部位信息。实验比较分析了不同数据增强方式、卷积核大小和激活函数对模型的影响。【结果】一阶微分融合和二阶微分融合的组合是最佳数据增强方法,对比学习模型最佳参数为卷积核11*1,激活函数为ELU。模型对部位的平均识别率达到91.79%。相比SVM、PCA+SVM和PLS-DA方法,NIR-BYOL模型的准确率有显著提升,分别提升了13.12%、15.79%、16.79%。【结论】近红外光谱分析技术结合对比学习模型可以有效分类识别烟叶的部位信息。 展开更多
关键词 对比学习 近红外光谱 微分光谱融合 烟叶部位识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部