大容积环境测试舱内温湿度控制系统具有非线性、时变性和耦合性的特点,传统的比例积分微分(Proportion integral differential,PID)控制器参数整定方法不能满足环境测试舱温湿度控制的要求。只有获得PID控制器的最优参数才能实现环境测...大容积环境测试舱内温湿度控制系统具有非线性、时变性和耦合性的特点,传统的比例积分微分(Proportion integral differential,PID)控制器参数整定方法不能满足环境测试舱温湿度控制的要求。只有获得PID控制器的最优参数才能实现环境测试舱温湿度的优化控制。该文提出一种遗传算法(Genetic algorithm,GA)优化PID控制器参数的控制算法—GA-PID。首先通过预估解耦方法对温湿度解耦,然后将目标函数作为控制器的评估值,通过遗传算法的选择、交叉、变异、迭代功能获得PID控制器参数的最优解,以弥补常规PID算法在环境测试舱温湿度控制系统中的不足。通过MATLAB进行了仿真实验,实验结果表明预估解耦可有效地对温湿度进行解耦,提出的GA-PID控制算法可实现快速、准确以及稳定的环境测试舱温湿度控制,具有更好的控制性能。展开更多
针对压电柔性机械臂运行过程中的弹性振动问题,提出了基于粒子群优化算法(particle swarm optimization,简称PSO)自整定比例积分微分(proportional integral differential,简称PID)控制器参数的柔性臂振动抑制方法。采用标准粒子群优化...针对压电柔性机械臂运行过程中的弹性振动问题,提出了基于粒子群优化算法(particle swarm optimization,简称PSO)自整定比例积分微分(proportional integral differential,简称PID)控制器参数的柔性臂振动抑制方法。采用标准粒子群优化算法,以时间乘绝对误差积(integrated time and absolute error,简称ITAE)准则为适应度函数,整定PID控制器的3个控制参数Kp,Ki和Kd,并采用Matlab Simulink平台建立双连杆压电柔性机械臂振动控制仿真模型,研制基于虚拟仪器技术的柔性臂振动控制试验系统。仿真与试验结果表明,采用常规PID控制算法和基于PSO自整定的PID控制算法均能有效地抑制柔性机械臂的弹性振动,但后者的振动抑制效果、鲁棒性与稳定性优于前者。展开更多
文摘大容积环境测试舱内温湿度控制系统具有非线性、时变性和耦合性的特点,传统的比例积分微分(Proportion integral differential,PID)控制器参数整定方法不能满足环境测试舱温湿度控制的要求。只有获得PID控制器的最优参数才能实现环境测试舱温湿度的优化控制。该文提出一种遗传算法(Genetic algorithm,GA)优化PID控制器参数的控制算法—GA-PID。首先通过预估解耦方法对温湿度解耦,然后将目标函数作为控制器的评估值,通过遗传算法的选择、交叉、变异、迭代功能获得PID控制器参数的最优解,以弥补常规PID算法在环境测试舱温湿度控制系统中的不足。通过MATLAB进行了仿真实验,实验结果表明预估解耦可有效地对温湿度进行解耦,提出的GA-PID控制算法可实现快速、准确以及稳定的环境测试舱温湿度控制,具有更好的控制性能。
文摘针对压电柔性机械臂运行过程中的弹性振动问题,提出了基于粒子群优化算法(particle swarm optimization,简称PSO)自整定比例积分微分(proportional integral differential,简称PID)控制器参数的柔性臂振动抑制方法。采用标准粒子群优化算法,以时间乘绝对误差积(integrated time and absolute error,简称ITAE)准则为适应度函数,整定PID控制器的3个控制参数Kp,Ki和Kd,并采用Matlab Simulink平台建立双连杆压电柔性机械臂振动控制仿真模型,研制基于虚拟仪器技术的柔性臂振动控制试验系统。仿真与试验结果表明,采用常规PID控制算法和基于PSO自整定的PID控制算法均能有效地抑制柔性机械臂的弹性振动,但后者的振动抑制效果、鲁棒性与稳定性优于前者。