A dynamic model of schistosoma japonicum transmission is presented that incorporates effects of the prepatent periods of the different stages of schistosoma into Baxbour's model. The model consists of four delay diff...A dynamic model of schistosoma japonicum transmission is presented that incorporates effects of the prepatent periods of the different stages of schistosoma into Baxbour's model. The model consists of four delay differential equations. Stability of the disease free equilibrium and the existence of an endemic equilibrium for this model are stated in terms of a key threshold parameter. The study of dynamics for the model shows that the endemic equilibrium is globally stable in an open region if it exists and there is no delays, and for some nonzero delays the endemic equilibrium undergoes Hopf bifurcation and a periodic orbit emerges. Some numerical results are provided to support the theoretic results in this paper. These results suggest that prepatent periods in infection affect the prevalence of schistosomiasis, and it is an effective strategy on schistosomiasis control to lengthen in prepatent period on infected definitive hosts by drug treatment (or lengthen in prepatent period on infected intermediate snails by lower water temperature).展开更多
A differential-algebraic prey--predator model with time delay and Allee effect on the growth of the prey population is investigated. Using differential-algebraic system theory, we transform the prey predator model int...A differential-algebraic prey--predator model with time delay and Allee effect on the growth of the prey population is investigated. Using differential-algebraic system theory, we transform the prey predator model into its normal form and study its dynamics in terms of local analysis and Hopf bifurcation. By analyzing the associated characteristic equation, it is observed that the model undergoes a Hopf bifurcation at some critical value of time delay. In particular, we study the direction of Hopf bifurcation and the stability of bifurcated periodic solutions, and an explicit algorithm is given by applying the normal form theory and the center manifold reduction for functional differential equations. Finally, numerical simulations supporting the theoretical analysis are also included.展开更多
基金supported by the National Natural Science Foundation of China(Nos.10831003,10925102)the Program of Shanghai Subject Chief Scientist(No.10XD1406200)
文摘A dynamic model of schistosoma japonicum transmission is presented that incorporates effects of the prepatent periods of the different stages of schistosoma into Baxbour's model. The model consists of four delay differential equations. Stability of the disease free equilibrium and the existence of an endemic equilibrium for this model are stated in terms of a key threshold parameter. The study of dynamics for the model shows that the endemic equilibrium is globally stable in an open region if it exists and there is no delays, and for some nonzero delays the endemic equilibrium undergoes Hopf bifurcation and a periodic orbit emerges. Some numerical results are provided to support the theoretic results in this paper. These results suggest that prepatent periods in infection affect the prevalence of schistosomiasis, and it is an effective strategy on schistosomiasis control to lengthen in prepatent period on infected definitive hosts by drug treatment (or lengthen in prepatent period on infected intermediate snails by lower water temperature).
基金This work was supported by National Science Foundation of China 61273008 and 61203001, Doctor Startup Fund of Liaoning Province (20131026), Fundamental Research Funds for the Central University (N140504005) and China Scholarship Council. The authors gratefully thank referees for their valuable suggestions.
文摘A differential-algebraic prey--predator model with time delay and Allee effect on the growth of the prey population is investigated. Using differential-algebraic system theory, we transform the prey predator model into its normal form and study its dynamics in terms of local analysis and Hopf bifurcation. By analyzing the associated characteristic equation, it is observed that the model undergoes a Hopf bifurcation at some critical value of time delay. In particular, we study the direction of Hopf bifurcation and the stability of bifurcated periodic solutions, and an explicit algorithm is given by applying the normal form theory and the center manifold reduction for functional differential equations. Finally, numerical simulations supporting the theoretical analysis are also included.