Making use of a new generalized ans?tze and a proper transformation, we generalized the extended tanh-function method. Applying the generalized method with the aid of Maple, we consider some nonlinear evolution equati...Making use of a new generalized ans?tze and a proper transformation, we generalized the extended tanh-function method. Applying the generalized method with the aid of Maple, we consider some nonlinear evolution equations. As a result, we can successfully recover the previously known solitary wave solutions that had been found by the extended tanh-function method and other more sophisticated methods. More importantly, for some equations, we also obtain other new and more general solutions at the same time. The results include kink-profile solitary-wave solutions, bell-profile solitary-wave solutions, periodic wave solutions, rational solutions, singular solutions and new formal solutions.展开更多
In the present paper, with the aid of symbolic computation, families of new nontrivial solutions of the first-order sub-ODE F12 = AF2 + BF2+p + CF2+2p (where F1= dF/dε, p 〉 0) are obtained. To our best knowled...In the present paper, with the aid of symbolic computation, families of new nontrivial solutions of the first-order sub-ODE F12 = AF2 + BF2+p + CF2+2p (where F1= dF/dε, p 〉 0) are obtained. To our best knowledge, these nontrivial solutions have not been found in [X.Z. Li and M.L. Wang, Phys. Lett. A 361 (2007) 115] and IS. Zhang, W. Wang, and J.L. Tong, Phys. Lett. A 372 (2008) 3808] and other existent papers until now. Using these nontrivial solutions, the sub-ODE method is described to construct several kinds of exact travelling wave solutions for the generalized KdV-mKdV equation with higher-order nonlinear terms and the generalized ZK equation with higher-order nonlinear terms. By means of this method, many other physically important nonlinear partial differential equations with nonlinear terms of any order can be investigated and new nontrivial solutions can be explicitly obtained with the help of symbolic computation system Maple or Mathematics.展开更多
In this paper,based on the symbolic computing system Maple,the direct method for Lie symmetry groupspresented by Sen-Yue Lou [J.Phys.A:Math.Gen.38 (2005) L129] is extended from the continuous differential equationsto ...In this paper,based on the symbolic computing system Maple,the direct method for Lie symmetry groupspresented by Sen-Yue Lou [J.Phys.A:Math.Gen.38 (2005) L129] is extended from the continuous differential equationsto the differential-difference equations.With the extended method,we study the well-known differential-difference KPequation,KZ equation and (2+1)-dimensional ANNV system,and both the Lie point symmetry groups and the non-Liesymmetry groups are obtained.展开更多
Starting from a simple transformation, and with the aid of symbolic computation, we establish the relationship between the solution of a generalized variable coefficient Kadomtsev–Petviashvili(vKP) equation and the s...Starting from a simple transformation, and with the aid of symbolic computation, we establish the relationship between the solution of a generalized variable coefficient Kadomtsev–Petviashvili(vKP) equation and the solution of a system of linear partial differential equations. According to this relation, we obtain Wronskian form solutions of the vKP equation, and further present N-soliton-like solutions for some degenerated forms of the vKP equation. Moreover,we also discuss the influences of arbitrary constants on the soliton and N-soliton solutions of the KPII equation.展开更多
文摘Making use of a new generalized ans?tze and a proper transformation, we generalized the extended tanh-function method. Applying the generalized method with the aid of Maple, we consider some nonlinear evolution equations. As a result, we can successfully recover the previously known solitary wave solutions that had been found by the extended tanh-function method and other more sophisticated methods. More importantly, for some equations, we also obtain other new and more general solutions at the same time. The results include kink-profile solitary-wave solutions, bell-profile solitary-wave solutions, periodic wave solutions, rational solutions, singular solutions and new formal solutions.
文摘In the present paper, with the aid of symbolic computation, families of new nontrivial solutions of the first-order sub-ODE F12 = AF2 + BF2+p + CF2+2p (where F1= dF/dε, p 〉 0) are obtained. To our best knowledge, these nontrivial solutions have not been found in [X.Z. Li and M.L. Wang, Phys. Lett. A 361 (2007) 115] and IS. Zhang, W. Wang, and J.L. Tong, Phys. Lett. A 372 (2008) 3808] and other existent papers until now. Using these nontrivial solutions, the sub-ODE method is described to construct several kinds of exact travelling wave solutions for the generalized KdV-mKdV equation with higher-order nonlinear terms and the generalized ZK equation with higher-order nonlinear terms. By means of this method, many other physically important nonlinear partial differential equations with nonlinear terms of any order can be investigated and new nontrivial solutions can be explicitly obtained with the help of symbolic computation system Maple or Mathematics.
文摘In this paper,based on the symbolic computing system Maple,the direct method for Lie symmetry groupspresented by Sen-Yue Lou [J.Phys.A:Math.Gen.38 (2005) L129] is extended from the continuous differential equationsto the differential-difference equations.With the extended method,we study the well-known differential-difference KPequation,KZ equation and (2+1)-dimensional ANNV system,and both the Lie point symmetry groups and the non-Liesymmetry groups are obtained.
基金Supported by the Fundamental Research Funds for the Central Universities under Grant No. BUPT2013RC0902
文摘Starting from a simple transformation, and with the aid of symbolic computation, we establish the relationship between the solution of a generalized variable coefficient Kadomtsev–Petviashvili(vKP) equation and the solution of a system of linear partial differential equations. According to this relation, we obtain Wronskian form solutions of the vKP equation, and further present N-soliton-like solutions for some degenerated forms of the vKP equation. Moreover,we also discuss the influences of arbitrary constants on the soliton and N-soliton solutions of the KPII equation.