Due to the difficulty of controlling the process with inverse response and dead time,a Multi-objective Optimization based on Genetic Algorithm (MOGA) method for tuning of proportional-integral-derivative (PID) control...Due to the difficulty of controlling the process with inverse response and dead time,a Multi-objective Optimization based on Genetic Algorithm (MOGA) method for tuning of proportional-integral-derivative (PID) controller is proposed. The settings of the controller are valued by two criteria,the error between output and reference signals and control moves. An appropriate set of Pareto optimal setting of the PID controller is founded by analyzing the results of Pareto optimal surfaces for balancing the two criteria. A high order process with inverse response and dead time is used to illustrate the results of the proposed method. And the efficiency and robustness of the tuning method are evident compared with methods in recent literature.展开更多
Hybrid mecihanism is a new type of planar controllable mechanism. Position control acouracy of system determines the output aconracy of the mechanism. In order to achieve the desired high acowacy, nonlinear factors as...Hybrid mecihanism is a new type of planar controllable mechanism. Position control acouracy of system determines the output aconracy of the mechanism. In order to achieve the desired high acowacy, nonlinear factors as friction nmst be accurately compensated in the real-time servo control algoritinn. In this paper, the model of a hybrid five-bar mechanism is introduced. In terms of the characteristics of the hybrid mechanism, a hybrid intelligent control algorithm based on proportional-integral-derivative (PID) control and cerebellar model articulation control techniques was presented and used to perform control of hybrid five-bar mechanism for the lust time. The sinmulation results show that the hybrid control method can improve the control effect remarkably, compared with the traditional PID control strategy.展开更多
The idea of the gradient method for integrating the dynamical equations of a nonconservative system presented by Vujanovic is transplanted to a Birkhoffian system, which is a new method for the integration of Birkhoff...The idea of the gradient method for integrating the dynamical equations of a nonconservative system presented by Vujanovic is transplanted to a Birkhoffian system, which is a new method for the integration of Birkhoff's equations. First, the differential equations of motion of the Birkhoffian system are written out. Secondly, 2n Birkhoff's variables are divided into two parts, and assume that a part of the variables is the functions of the remaining part of the variables and time. Thereby, the basic quasi-linear partial differential equations are established. If a complete solution of the basic partial differential equations is sought out, the solution of the problem is given by a set of algebraic equations. Since one can choose n arbitrary Birkhoff's variables as the functions of n remains of variables and time in a specific problem, the method has flexibility. The major difficulty of this method lies in finding a complete solution of the basic partial differential equation. Once one finds the complete solution, the motion of the systems can be obtained without doing further integration. Finally, two examples are given to illustrate the application of the results.展开更多
New developments have been made on the applications of the differential quadrature(DQ)method to analysis of structural problems recently.The method is used to obtain solutions of large deflections, membrane and bendin...New developments have been made on the applications of the differential quadrature(DQ)method to analysis of structural problems recently.The method is used to obtain solutions of large deflections, membrane and bending stresses of circular plates with movable and immovable edges under uniform pressures or a central point load.The shortcomings existing in the earlier analysis by the DQ method have been overcome by a new approach in applying the boundary conditions. The accuracy and the efficiency of the newly developed method for solving nonlinear problems are demonstrated.展开更多
Unconditionally stable higher-order accurate time step integration algorithms based on the differential quadrature method (DQM) for second-order initial value problems were applied and the quadrature rules of DQM, com...Unconditionally stable higher-order accurate time step integration algorithms based on the differential quadrature method (DQM) for second-order initial value problems were applied and the quadrature rules of DQM, computing of the weighting coefficients and choices of sampling grid points were discussed. Some numerical examples dealing with the heat transfer problem, the second-order differential equation of imposed vibration of linear single-degree-of-freedom systems and double-degree-of-freedom systems, the nonlinear move differential equation and a beam forced by a changing load were computed, respectively. The results indicated that the algorithm can produce highly accurate solutions with minimal time consumption, and that the system total energy can remain conservative in the numerical computation.展开更多
The authors give the solution to the problem of one-dimensional conso l idation of double-layered ground with the use of the differential quadrature me t hod. Case studies showed that the computational results for por...The authors give the solution to the problem of one-dimensional conso l idation of double-layered ground with the use of the differential quadrature me t hod. Case studies showed that the computational results for pore-water pressure in soil layer agreed with those of analytical solution; and that in the computat ional results for the interface of soil layer also agreed with those of the anal ytical solution except for the small discrepancies during shortly after the star t of computation. The advantages of the solution presented in this paper are tha t compared with the analytical solution, it avoids the cumbersome work in solvin g the transcendental equation for eigenvalues, and in the case of the Laplace transform s olution, it can resolve the precision problem in the numerical solution of long time inverse Laplace transform. Because of the matrix form of the solution in th is paper, it is convenient for formulating computational program for engineering practice. The formulas for calculating double-layered ground consolidation may be easily extended to the case of multi-layered soils.展开更多
In this paper, we investigate a new type of fractional coupled nonlinear equations. By introducing the fractional derivative that satisfies the Caputo's definition, we directly extend the applications of the Adomian ...In this paper, we investigate a new type of fractional coupled nonlinear equations. By introducing the fractional derivative that satisfies the Caputo's definition, we directly extend the applications of the Adomian decomposition method to the new system. As a result, with the aid of Maple, the realistic and convergent rapidly series solutions are obtained with easily computable components. Two famous fractional coupled examples: KdV and mKdV equations, are used to illustrate the efficiency and accuracy of the proposed method.展开更多
The aim of this paper is to obtain numerical solutions of the one-dimensional,two-dimensional and coupled Burgers' equations through the generalized differential quadrature method(GDQM).The polynomial-based differ...The aim of this paper is to obtain numerical solutions of the one-dimensional,two-dimensional and coupled Burgers' equations through the generalized differential quadrature method(GDQM).The polynomial-based differential quadrature(PDQ) method is employed and the obtained system of ordinary differential equations is solved via the total variation diminishing Runge-Kutta(TVD-RK) method.The numerical solutions are satisfactorily coincident with the exact solutions.The method can compete against the methods applied in the literature.展开更多
Tubular flow reactors are mainly used in chemical industry and waste water discharged units. Control of output variables is very difficult because of the existence of high dead-time in these types of reactors. In the ...Tubular flow reactors are mainly used in chemical industry and waste water discharged units. Control of output variables is very difficult because of the existence of high dead-time in these types of reactors. In the present work, sodium hydroxide and acetic acid solutions were sent to the tubular flow reactor. The aim was to control p H at 7 in the nonlinear region. The p H control of a tubular flow reactor with high time delay and a highly nonlinear behavior in p H neutralization reaction was investigated experimentally in the face of the various load and set point changes. Firstly, efficiency of conventional Proportional-Integral-Derivative(PID) algorithm in the experiments was tested. Then self-tuning PID(STPID) control system was applied by using the ARMAX model. The model parameters were calculated from input–output data by using PRBS signal as disturbance and Bierman algorithm. Lastly, the experimental fuzzy control of p H based on fuzzy model was achieved to compare the success of fuzzy approach with the performance of other control cases studied.展开更多
Given a set of independent vector fields on a smooth manifold, we discuss how to find a function whose zero-level set is invariant under the flows of the vector fields. As an application, we study the solvability of o...Given a set of independent vector fields on a smooth manifold, we discuss how to find a function whose zero-level set is invariant under the flows of the vector fields. As an application, we study the solvability of overdetermined partial differential equations: Given a system of quasi-linear PDEs of first order for one unknown function we find a necessary and sufficient condition for the existence of solutions in terms of the second jet of the coefficients. This generalizes to certain quasi-linear systems of first order for several unknown functions.展开更多
We analyze an h-p version Petrov-Galerkin finite element method for linear Volterra integrodifferential equations. We prove optimal a priori error bounds in the L2- and H1-norm that are explicit in the time steps,the ...We analyze an h-p version Petrov-Galerkin finite element method for linear Volterra integrodifferential equations. We prove optimal a priori error bounds in the L2- and H1-norm that are explicit in the time steps,the approximation orders and in the regularity of the exact solution. Numerical experiments confirm the theoretical results. Moreover,we observe that the numerical scheme superconverges at the nodal points of the time partition.展开更多
In the literature (Tan and Wang, 2010), Tan and Wang investigated the convergence of the split-step backward Euler (SSBE) method for linear stochastic delay integro-differential equations (SDIDEs) and proved the...In the literature (Tan and Wang, 2010), Tan and Wang investigated the convergence of the split-step backward Euler (SSBE) method for linear stochastic delay integro-differential equations (SDIDEs) and proved the mean-square stability of SSBE method under some condition. Unfortu- nately, the main result of stability derived by the condition is somewhat restrictive to be applied for practical application. This paper improves the corresponding results. The authors not only prove the mean-square stability of the numerical method but also prove the general mean-square stability of the numerical method. Furthermore, an example is given to illustrate the theory.展开更多
基金National Natural Science Foundation of China (No.60504033)
文摘Due to the difficulty of controlling the process with inverse response and dead time,a Multi-objective Optimization based on Genetic Algorithm (MOGA) method for tuning of proportional-integral-derivative (PID) controller is proposed. The settings of the controller are valued by two criteria,the error between output and reference signals and control moves. An appropriate set of Pareto optimal setting of the PID controller is founded by analyzing the results of Pareto optimal surfaces for balancing the two criteria. A high order process with inverse response and dead time is used to illustrate the results of the proposed method. And the efficiency and robustness of the tuning method are evident compared with methods in recent literature.
文摘Hybrid mecihanism is a new type of planar controllable mechanism. Position control acouracy of system determines the output aconracy of the mechanism. In order to achieve the desired high acowacy, nonlinear factors as friction nmst be accurately compensated in the real-time servo control algoritinn. In this paper, the model of a hybrid five-bar mechanism is introduced. In terms of the characteristics of the hybrid mechanism, a hybrid intelligent control algorithm based on proportional-integral-derivative (PID) control and cerebellar model articulation control techniques was presented and used to perform control of hybrid five-bar mechanism for the lust time. The sinmulation results show that the hybrid control method can improve the control effect remarkably, compared with the traditional PID control strategy.
基金The National Natural Science Foundation of China(No.10972151)
文摘The idea of the gradient method for integrating the dynamical equations of a nonconservative system presented by Vujanovic is transplanted to a Birkhoffian system, which is a new method for the integration of Birkhoff's equations. First, the differential equations of motion of the Birkhoffian system are written out. Secondly, 2n Birkhoff's variables are divided into two parts, and assume that a part of the variables is the functions of the remaining part of the variables and time. Thereby, the basic quasi-linear partial differential equations are established. If a complete solution of the basic partial differential equations is sought out, the solution of the problem is given by a set of algebraic equations. Since one can choose n arbitrary Birkhoff's variables as the functions of n remains of variables and time in a specific problem, the method has flexibility. The major difficulty of this method lies in finding a complete solution of the basic partial differential equation. Once one finds the complete solution, the motion of the systems can be obtained without doing further integration. Finally, two examples are given to illustrate the application of the results.
文摘New developments have been made on the applications of the differential quadrature(DQ)method to analysis of structural problems recently.The method is used to obtain solutions of large deflections, membrane and bending stresses of circular plates with movable and immovable edges under uniform pressures or a central point load.The shortcomings existing in the earlier analysis by the DQ method have been overcome by a new approach in applying the boundary conditions. The accuracy and the efficiency of the newly developed method for solving nonlinear problems are demonstrated.
文摘Unconditionally stable higher-order accurate time step integration algorithms based on the differential quadrature method (DQM) for second-order initial value problems were applied and the quadrature rules of DQM, computing of the weighting coefficients and choices of sampling grid points were discussed. Some numerical examples dealing with the heat transfer problem, the second-order differential equation of imposed vibration of linear single-degree-of-freedom systems and double-degree-of-freedom systems, the nonlinear move differential equation and a beam forced by a changing load were computed, respectively. The results indicated that the algorithm can produce highly accurate solutions with minimal time consumption, and that the system total energy can remain conservative in the numerical computation.
文摘The authors give the solution to the problem of one-dimensional conso l idation of double-layered ground with the use of the differential quadrature me t hod. Case studies showed that the computational results for pore-water pressure in soil layer agreed with those of analytical solution; and that in the computat ional results for the interface of soil layer also agreed with those of the anal ytical solution except for the small discrepancies during shortly after the star t of computation. The advantages of the solution presented in this paper are tha t compared with the analytical solution, it avoids the cumbersome work in solvin g the transcendental equation for eigenvalues, and in the case of the Laplace transform s olution, it can resolve the precision problem in the numerical solution of long time inverse Laplace transform. Because of the matrix form of the solution in th is paper, it is convenient for formulating computational program for engineering practice. The formulas for calculating double-layered ground consolidation may be easily extended to the case of multi-layered soils.
基金The project supported by National Natural Science Foundation of China under Grant No.10735030Shanghai Leading Academic Discipline Project under Grant No.B412+2 种基金Natural Science Foundation of Zhejiang Province under Grant No.Y604056Doctoral Science Foundation of Ningbo City under Grant No.2005A61030Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT0734
文摘In this paper, we investigate a new type of fractional coupled nonlinear equations. By introducing the fractional derivative that satisfies the Caputo's definition, we directly extend the applications of the Adomian decomposition method to the new system. As a result, with the aid of Maple, the realistic and convergent rapidly series solutions are obtained with easily computable components. Two famous fractional coupled examples: KdV and mKdV equations, are used to illustrate the efficiency and accuracy of the proposed method.
文摘The aim of this paper is to obtain numerical solutions of the one-dimensional,two-dimensional and coupled Burgers' equations through the generalized differential quadrature method(GDQM).The polynomial-based differential quadrature(PDQ) method is employed and the obtained system of ordinary differential equations is solved via the total variation diminishing Runge-Kutta(TVD-RK) method.The numerical solutions are satisfactorily coincident with the exact solutions.The method can compete against the methods applied in the literature.
文摘Tubular flow reactors are mainly used in chemical industry and waste water discharged units. Control of output variables is very difficult because of the existence of high dead-time in these types of reactors. In the present work, sodium hydroxide and acetic acid solutions were sent to the tubular flow reactor. The aim was to control p H at 7 in the nonlinear region. The p H control of a tubular flow reactor with high time delay and a highly nonlinear behavior in p H neutralization reaction was investigated experimentally in the face of the various load and set point changes. Firstly, efficiency of conventional Proportional-Integral-Derivative(PID) algorithm in the experiments was tested. Then self-tuning PID(STPID) control system was applied by using the ARMAX model. The model parameters were calculated from input–output data by using PRBS signal as disturbance and Bierman algorithm. Lastly, the experimental fuzzy control of p H based on fuzzy model was achieved to compare the success of fuzzy approach with the performance of other control cases studied.
基金supported by National Research Foundation of Republic of Korea(Grant Nos.2011-0008976 and 2010-0011841)
文摘Given a set of independent vector fields on a smooth manifold, we discuss how to find a function whose zero-level set is invariant under the flows of the vector fields. As an application, we study the solvability of overdetermined partial differential equations: Given a system of quasi-linear PDEs of first order for one unknown function we find a necessary and sufficient condition for the existence of solutions in terms of the second jet of the coefficients. This generalizes to certain quasi-linear systems of first order for several unknown functions.
基金supported by National Natural Science Foundation of China(Grant Nos.11226330 and 11301343)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20113127120002)+3 种基金the Research Fund for Young Teachers Program in Shanghai(GrantNo.shsf018)the Fund for E-institute of Shanghai Universities(Grant No.E03004)supported by the Natural Sciences and Engineering Research Council of Canada(Grant No.OGP0046726)Shanghai University under Leading Academic Discipline Project of Shanghai MunicipalEducation Commission(Grant No.J50101)
文摘We analyze an h-p version Petrov-Galerkin finite element method for linear Volterra integrodifferential equations. We prove optimal a priori error bounds in the L2- and H1-norm that are explicit in the time steps,the approximation orders and in the regularity of the exact solution. Numerical experiments confirm the theoretical results. Moreover,we observe that the numerical scheme superconverges at the nodal points of the time partition.
基金supported by the Fundamental Research Funds for the Central Universities under Grant No. 2012089:31541111213China Postdoctoral Science Foundation Funded Project under Grant No.2012M511615the State Key Program of National Natural Science of China under Grant No.61134012
文摘In the literature (Tan and Wang, 2010), Tan and Wang investigated the convergence of the split-step backward Euler (SSBE) method for linear stochastic delay integro-differential equations (SDIDEs) and proved the mean-square stability of SSBE method under some condition. Unfortu- nately, the main result of stability derived by the condition is somewhat restrictive to be applied for practical application. This paper improves the corresponding results. The authors not only prove the mean-square stability of the numerical method but also prove the general mean-square stability of the numerical method. Furthermore, an example is given to illustrate the theory.