期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于稀疏自编码器的空间微动目标融合识别方法
1
作者
田旭东
白雪茹
周峰
《电子与信息学报》
EI
CSCD
北大核心
2023年第12期4336-4344,共9页
当采用高分辨雷达对空间微动目标进行观测时,往往能同时获得其窄带、宽带回波。为充分利用其中蕴含的丰富电磁散射、形状、结构及运动信息,该文提出基于稀疏自编码器(SAE)的空间微动目标特征级融合识别方法。在训练阶段,首先采用卷积神...
当采用高分辨雷达对空间微动目标进行观测时,往往能同时获得其窄带、宽带回波。为充分利用其中蕴含的丰富电磁散射、形状、结构及运动信息,该文提出基于稀疏自编码器(SAE)的空间微动目标特征级融合识别方法。在训练阶段,首先采用卷积神经网络(CNN)分别提取训练集中微动目标回波的1维高分辨距离像(HRRP)、时频图(JTF)及距离-瞬时多普勒像(RID)层级特征。随后,将提取的3个深层特征进行1维拼接形成联合特征向量,并采用SAE自动学习联合特征向量的隐层特征。进而剔除SAE解码部分并在编码器后接入Softmax分类器构成识别网络。最后,利用SAE网络参数对识别网络进行初始化,并利用上述联合特征向量对其进行微调得到训练好的识别网络。在测试阶段,将CNN所提测试集的联合特征向量直接输入训练好的识别网络以得到融合识别结果。不同条件下的电磁仿真数据识别结果证明了所提方法的有效性及稳健性。
展开更多
关键词
微动空间目标
融合识别
卷积神经网络
稀疏自编码器
下载PDF
职称材料
题名
基于稀疏自编码器的空间微动目标融合识别方法
1
作者
田旭东
白雪茹
周峰
机构
西安电子科技大学电子信息攻防对抗与仿真技术教育部重点实验室
西安电子科技大学雷达信号处理全国重点实验室
出处
《电子与信息学报》
EI
CSCD
北大核心
2023年第12期4336-4344,共9页
基金
国家自然科学基金(62131020)
中央高校基本科研业务费专项资金。
文摘
当采用高分辨雷达对空间微动目标进行观测时,往往能同时获得其窄带、宽带回波。为充分利用其中蕴含的丰富电磁散射、形状、结构及运动信息,该文提出基于稀疏自编码器(SAE)的空间微动目标特征级融合识别方法。在训练阶段,首先采用卷积神经网络(CNN)分别提取训练集中微动目标回波的1维高分辨距离像(HRRP)、时频图(JTF)及距离-瞬时多普勒像(RID)层级特征。随后,将提取的3个深层特征进行1维拼接形成联合特征向量,并采用SAE自动学习联合特征向量的隐层特征。进而剔除SAE解码部分并在编码器后接入Softmax分类器构成识别网络。最后,利用SAE网络参数对识别网络进行初始化,并利用上述联合特征向量对其进行微调得到训练好的识别网络。在测试阶段,将CNN所提测试集的联合特征向量直接输入训练好的识别网络以得到融合识别结果。不同条件下的电磁仿真数据识别结果证明了所提方法的有效性及稳健性。
关键词
微动空间目标
融合识别
卷积神经网络
稀疏自编码器
Keywords
Micro-motion space targets
Fusion recognition
Convolution Neural Network(CNN)
Sparse Auto-Encoder(SAE)
分类号
TN957 [电子电信—信号与信息处理]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于稀疏自编码器的空间微动目标融合识别方法
田旭东
白雪茹
周峰
《电子与信息学报》
EI
CSCD
北大核心
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部