A new non-linear transverse-torsional coupled model was proposed for 2K-H planetary gear train, and gear's geometric eccentricity error, comprehensive transmission error, time-varying meshing stiffness, sun-planet...A new non-linear transverse-torsional coupled model was proposed for 2K-H planetary gear train, and gear's geometric eccentricity error, comprehensive transmission error, time-varying meshing stiffness, sun-planet and planet-ring gear pair's backlashes and sun gear's bearing clearance were taken into consideration. The solution of differential governing equation of motion was solved by applying variable step-size Runge-Kutta numerical integration method. The system motion state was investigated systematically and qualitatively, and exhibited diverse characteristics of bifurcation and chaos as well as non-linear behavior under different bifurcation parameters including meshing frequency, sun-planet backlash, planet-ring backlash and sun gear's bearing clearance. Analysis results show that the increasing damping could suppress the region of chaotic motion and improve the system's stability significantly. The route of crisis to chaotic motion was observed under the bifurcation parameter of meshing frequency. However, the routes of period doubling and crisis to chaos were identified under the bifurcation parameter of sun-planet backlash; besides, several different types of routes to chaos were observed and coexisted under the bifurcation parameter of planet-ring backlash including period doubling, Hopf bifurcation, 3T-periodic channel and crisis. Additionally, planet-ring backlash generated a strong coupling effect to system's non-linear behavior while the sun gear's bearing clearance produced weak coupling effect. Finally, quasi-periodic motion could be found under all above–mentioned bifurcation parameters and closely associated with the 3T-periodic motion.展开更多
In the real world, the population systems are often subject to white noises and a system with such stochastic perturbations tends to be suitably modeled by stochastic differential equations. This paper is concerned wi...In the real world, the population systems are often subject to white noises and a system with such stochastic perturbations tends to be suitably modeled by stochastic differential equations. This paper is concerned with the dynamic behaviors of a delay stochastic competitive system. We first obtain the global existence of a unique positive solution of system. Later, we show that the solution of system will be stochastically ultimate boundedness. However, large noises may make the system extinct exponentially with probability one. Also, sufficient conditions for the global attractivity of system are established. FinMly, illustrated examples are given to show the effectiveness of the proposed criteria.展开更多
基金Projects(51375226,51305196,51475226) supported by the National Natural Science Foundation of ChinaProjects(NZ2013303,NZ2014201) supported by the Fundamental Research Funds for the Central Universities,China
文摘A new non-linear transverse-torsional coupled model was proposed for 2K-H planetary gear train, and gear's geometric eccentricity error, comprehensive transmission error, time-varying meshing stiffness, sun-planet and planet-ring gear pair's backlashes and sun gear's bearing clearance were taken into consideration. The solution of differential governing equation of motion was solved by applying variable step-size Runge-Kutta numerical integration method. The system motion state was investigated systematically and qualitatively, and exhibited diverse characteristics of bifurcation and chaos as well as non-linear behavior under different bifurcation parameters including meshing frequency, sun-planet backlash, planet-ring backlash and sun gear's bearing clearance. Analysis results show that the increasing damping could suppress the region of chaotic motion and improve the system's stability significantly. The route of crisis to chaotic motion was observed under the bifurcation parameter of meshing frequency. However, the routes of period doubling and crisis to chaos were identified under the bifurcation parameter of sun-planet backlash; besides, several different types of routes to chaos were observed and coexisted under the bifurcation parameter of planet-ring backlash including period doubling, Hopf bifurcation, 3T-periodic channel and crisis. Additionally, planet-ring backlash generated a strong coupling effect to system's non-linear behavior while the sun gear's bearing clearance produced weak coupling effect. Finally, quasi-periodic motion could be found under all above–mentioned bifurcation parameters and closely associated with the 3T-periodic motion.
基金Acknowledgments The authors thank the referees for their reports and many valuable comments and suggestions that greatly improved the presentation of this paper. The work is supported by the National Natural Science Foundation of China (No. 11261017), the Key Laboratory of Biological Resources Protection and Utilization of Hubei Province (No. PKLHB1323) and the Key Project of Chinese Ministry of Education (No. 212111).
文摘In the real world, the population systems are often subject to white noises and a system with such stochastic perturbations tends to be suitably modeled by stochastic differential equations. This paper is concerned with the dynamic behaviors of a delay stochastic competitive system. We first obtain the global existence of a unique positive solution of system. Later, we show that the solution of system will be stochastically ultimate boundedness. However, large noises may make the system extinct exponentially with probability one. Also, sufficient conditions for the global attractivity of system are established. FinMly, illustrated examples are given to show the effectiveness of the proposed criteria.