Infrared microthermometry allows direct measurement of fluid inclusions hosted in opaque ore minerals and can provide direct constraints on the evolution of ore-forming fluids.This study presents infrared microthermom...Infrared microthermometry allows direct measurement of fluid inclusions hosted in opaque ore minerals and can provide direct constraints on the evolution of ore-forming fluids.This study presents infrared microthermometry of spherite-hosted fluid inclusions from the Xinqiao deposit in the Middle-Lower Yangtze Metallogenic Belt and sheds new light on the ore genesis of the deposit.Considering that infrared light may lead to non-negligible temperature deviations during microthermometry,some tests were first conducted to ensure the accuracy of the microthermometric measurements.The measurement results indicated that using the lowest light intensity of the microscope and inserting an optical filter were effective in minimizing the possible temperature deviations of infrared microthermometry.All sphalerite-hosted fluid inclusions from the Xinqiao deposit were aqueous.They show homogenization temperature ranging from~200 to 350℃,but have two separate salinity groups(1.0 wt%-10 wt%and 15.1 wt%-19.2 wt%NaCl equivalent).The low-salinity group represents sedimentary exhalative(SEDEX)-associated fluids,whereas the high-salinity group results from modification by later magmatic hydrothermal fluids.Combined with published fluid inclusion data,the four-stage fluid evolution of the Xinqiao deposit was depicted.Furthermore,our data suggest that the Xinqiao deposit was formed by twostage metallogenic events including SEDEX and magmatic-hydrothermal mineralization.展开更多
This paper summarizes recent data about magnesite and talc genesis in Carboniferous host rocks of Western Carpathians (Slovakia) , which occur in two distinct belts in tectonic superunit Veporicum and its contact zone...This paper summarizes recent data about magnesite and talc genesis in Carboniferous host rocks of Western Carpathians (Slovakia) , which occur in two distinct belts in tectonic superunit Veporicum and its contact zone with Gemericum. The northern Sinec magnesite and talc belt (with main deposits Kokava, Sinec, Samo, Hnust'a-Mutnik) contains economic accummulation of magnesite and talc, while in the southern Ochtina belt ( main deposits in Dubrava massif-Dubrava, Mikova, Jedl'ovec; Lubenik, Ochtina, Kosice-Bankov, Banisko, Medvedia) the magnesite is dominating.The magnesite genesis by successive replacement of Carboniferous calcite to dolomite and magnesite during metamorphic process Ml (northern belt 280-400℃; , southern belt 370-420℃: ; Radvanec & Prochaska, 2001; Kodera & Radvanec, 2002) , being supplied by Mg from Permoscythian evaporitic bittern brines, relates to Variscan post-collisional (post-VD) evolution. The extensional tectonics and the high heat flow facilitated the generation of a hydrothermal system.The time-separated later metamorphic and sourcely different fluid flow event (M2; 1. c. ) produced talc. Tectonic, microtectonic, metamorphic and geochronological data relate the talc origin with the Alpine Upper Cretaceous (88-84 Ma; Maluski in Kovacik et al. , 1996) tectonothermal event AD2. This event, being the consequence of Alpine collisional ( AD1 ) crustal thickening and metamorphic core complex origin, meant regional extension and pervasive fluid flow of open system in crustal discontinuities. This process was prominent in the northern belt ( Sinec shear zone) located more closely to Veporic thermal dome, while towards its peripheral parts (southern Ochtina belt) the M2 metamorphic process and steatitization gradually weakened.Studies from Sinec shear zone (being the prominent AD2 -AD3 structure of northern Sinec belt) , where the dolomite/magnesite lenses (replacement in M1) and their accompanying lithology were in AD1 sandwitched between more competent basement blocks, proved in AD2 the pervasite steatitization, the talc and dolomite 2 origin in extensional microstructures ( metamorphic process M2; 490 -540℃, 240-330 MPa, 1. c. ).The economic accummulations of talc in Sinec belt are the products of antithetic shearing during the AD3 phase, being the gradual continuation of AD2 ( change of kinematics from unroofing to regional transpressional shearing). Contrary to the northern Sinec belt having located the AD3 deformation into narrow shear zone with soft lithology surrounded by hard lithology, in southern Ochtina belt the deformation AD3 was accommodated by wide soft rock column with rigid carbonate blocks floating inside. The lower P-T ( M2)conditions and deformational gradient in Ochtina belt during AD2 and AD3 phases caused why no economic talc accummulations developed there.The results of presented study can be used as general criteria for magnesite and talc prospection in Alpine type terranes.展开更多
基金supported by the National Key R&D Program of China(2018YFA0702701)the Fundamental Research Funds for the Central Universities(WK3410000015).
文摘Infrared microthermometry allows direct measurement of fluid inclusions hosted in opaque ore minerals and can provide direct constraints on the evolution of ore-forming fluids.This study presents infrared microthermometry of spherite-hosted fluid inclusions from the Xinqiao deposit in the Middle-Lower Yangtze Metallogenic Belt and sheds new light on the ore genesis of the deposit.Considering that infrared light may lead to non-negligible temperature deviations during microthermometry,some tests were first conducted to ensure the accuracy of the microthermometric measurements.The measurement results indicated that using the lowest light intensity of the microscope and inserting an optical filter were effective in minimizing the possible temperature deviations of infrared microthermometry.All sphalerite-hosted fluid inclusions from the Xinqiao deposit were aqueous.They show homogenization temperature ranging from~200 to 350℃,but have two separate salinity groups(1.0 wt%-10 wt%and 15.1 wt%-19.2 wt%NaCl equivalent).The low-salinity group represents sedimentary exhalative(SEDEX)-associated fluids,whereas the high-salinity group results from modification by later magmatic hydrothermal fluids.Combined with published fluid inclusion data,the four-stage fluid evolution of the Xinqiao deposit was depicted.Furthermore,our data suggest that the Xinqiao deposit was formed by twostage metallogenic events including SEDEX and magmatic-hydrothermal mineralization.
文摘This paper summarizes recent data about magnesite and talc genesis in Carboniferous host rocks of Western Carpathians (Slovakia) , which occur in two distinct belts in tectonic superunit Veporicum and its contact zone with Gemericum. The northern Sinec magnesite and talc belt (with main deposits Kokava, Sinec, Samo, Hnust'a-Mutnik) contains economic accummulation of magnesite and talc, while in the southern Ochtina belt ( main deposits in Dubrava massif-Dubrava, Mikova, Jedl'ovec; Lubenik, Ochtina, Kosice-Bankov, Banisko, Medvedia) the magnesite is dominating.The magnesite genesis by successive replacement of Carboniferous calcite to dolomite and magnesite during metamorphic process Ml (northern belt 280-400℃; , southern belt 370-420℃: ; Radvanec & Prochaska, 2001; Kodera & Radvanec, 2002) , being supplied by Mg from Permoscythian evaporitic bittern brines, relates to Variscan post-collisional (post-VD) evolution. The extensional tectonics and the high heat flow facilitated the generation of a hydrothermal system.The time-separated later metamorphic and sourcely different fluid flow event (M2; 1. c. ) produced talc. Tectonic, microtectonic, metamorphic and geochronological data relate the talc origin with the Alpine Upper Cretaceous (88-84 Ma; Maluski in Kovacik et al. , 1996) tectonothermal event AD2. This event, being the consequence of Alpine collisional ( AD1 ) crustal thickening and metamorphic core complex origin, meant regional extension and pervasive fluid flow of open system in crustal discontinuities. This process was prominent in the northern belt ( Sinec shear zone) located more closely to Veporic thermal dome, while towards its peripheral parts (southern Ochtina belt) the M2 metamorphic process and steatitization gradually weakened.Studies from Sinec shear zone (being the prominent AD2 -AD3 structure of northern Sinec belt) , where the dolomite/magnesite lenses (replacement in M1) and their accompanying lithology were in AD1 sandwitched between more competent basement blocks, proved in AD2 the pervasite steatitization, the talc and dolomite 2 origin in extensional microstructures ( metamorphic process M2; 490 -540℃, 240-330 MPa, 1. c. ).The economic accummulations of talc in Sinec belt are the products of antithetic shearing during the AD3 phase, being the gradual continuation of AD2 ( change of kinematics from unroofing to regional transpressional shearing). Contrary to the northern Sinec belt having located the AD3 deformation into narrow shear zone with soft lithology surrounded by hard lithology, in southern Ochtina belt the deformation AD3 was accommodated by wide soft rock column with rigid carbonate blocks floating inside. The lower P-T ( M2)conditions and deformational gradient in Ochtina belt during AD2 and AD3 phases caused why no economic talc accummulations developed there.The results of presented study can be used as general criteria for magnesite and talc prospection in Alpine type terranes.