Flower-like CuO and flower-like CuO/graphene composite were prepared successfully by hydrothermal method. They were characterized by X-ray diffraction, scanning electron microscopy, nitrogen adsorption, temperature-pr...Flower-like CuO and flower-like CuO/graphene composite were prepared successfully by hydrothermal method. They were characterized by X-ray diffraction, scanning electron microscopy, nitrogen adsorption, temperature-programmed reduction, and thermogravimetric analysis. It is found that the flower-like CuO microspheres, which are composed of CuO nanosheets, possess an average diameter of 4.2 μm and a Brunauer–Emmett–Teller surface area of 12.6 m2/g. Compared with the flower-like CuO, the obtained flower-like CuO/graphene composite shows an enhanced electrochemical performance with a higher capacity of 603 mA-h/g at 0.1 C rate and 382 mA-h/g at 1 C rate, and exhibits a better cycle stability with a high capacity retention of 95.5 % after 50 cycles even though at 1 C rate.展开更多
Microstructure and texture evolution of Cu-0.23%Al2O3 dispersion strengthened copper alloy, deformed at room temperature or cryogenic temperature, were investigated. The main textures in hot-extruded specimen were Bra...Microstructure and texture evolution of Cu-0.23%Al2O3 dispersion strengthened copper alloy, deformed at room temperature or cryogenic temperature, were investigated. The main textures in hot-extruded specimen were Brass {011} 〈211〉 and Cube {100} 〈100〉. Textures of Brass {011} 〈211〉 and Goss {011} 〈100〉 were observed in specimen after deformation at room temperature; while textures of Brass {011} 〈211〉, Goss {011} 〈100〉 and S {123} 〈634〉 were detected after deformation at cryogenic temperature. It is believed that the additional Al2O3 nanoparticles can result in dislocation pinning effect, which can further lead to the suppression of dislocations cross-slip. While in the specimen deformed at cryogenic temperature, both pinning effect and cryogenic temperature are responsible for the formation of Brass, Goss and S textures.展开更多
Graphite brasses were prepared by graphitizing annealing of cast brasses containing cementite particles,which were in-situ formed during the fasting process.The eutectic cast iron as carbon source was added into commo...Graphite brasses were prepared by graphitizing annealing of cast brasses containing cementite particles,which were in-situ formed during the fasting process.The eutectic cast iron as carbon source was added into common brasses by casting.SEM and EDS were used to analyze the microstructure of graphite brasses,and the relationship between the microstructure and machinability was investigated.The results show that graphite particles are formed by the decomposition of cementite particles in cast brasses.The graphite particles are uniformly dispersed in the brass matrix with the average size of 5.0 μm and the volume fraction of ~1.1%.The machinability in the graphite brass is dramatically increased relative to the common brass,because of the lubricating properties of graphite particles and its role in chip breaking.The workpiece surface of the graphite brasses chips is smooth and burr-free,and the chips of graphite brasses are short(C-shape) and discontinuous,which is much better than that of the long spiral chips of common brasses.展开更多
Flower-like 3D CuO microspheres were synthesized and used to photo-catalyze water oxidation under visible light.The structure of the CuO microspheres was characterized by scanning electron microscopy,transmission elec...Flower-like 3D CuO microspheres were synthesized and used to photo-catalyze water oxidation under visible light.The structure of the CuO microspheres was characterized by scanning electron microscopy,transmission electron microscopy,infrared,powder X-ray diffraction,electron dispersive spectroscopy,Raman and X-ray photoelectron spectroscopy(XPS).This is the first time that a copper oxide was demonstrated as a photocatalytic water oxidation catalyst under near neutral conditions.The catalytic activity of CuO microspheres in borate buffer shows the best performance with O2 yield of 11.5%.No change in the surface properties of CuO before and after the photocatalytic reaction was seen by XPS,which showed good catalyst stability.A photocatalytic water oxidation reaction mechanism catalyzed by the CuO microspheres was proposed.展开更多
Allelopathic effects of submerged macrophytes against algae are affected by many environmental factors which can only be measured one by one by traditional methods. Box-Behnken design of response surface methodology w...Allelopathic effects of submerged macrophytes against algae are affected by many environmental factors which can only be measured one by one by traditional methods. Box-Behnken design of response surface methodology was used to optimize three environmental factors (temperature, light intensity and total dissolved solids) of allelopathic effects of Potarnogeton pectinatus against Microcystis aeruginosa at the same time. By solving the regression equation and analyzing the response surface contour plots, the optimal conditions of the relatively inhibitory rate of Microcystis aeruginosa were that the temperature was 23℃, the light intensity was 2 700 lx and the total dissolved solids were 4 415 mg/L. Under these conditions, the optimal value of relatively inhibitory rate of Microcystis aeruginosa was 81.9%. According to validation experiments, the results of analysis indicated that the experimental values fitted well with the predicted ones.展开更多
Cu2O particles with different shapes were prepared via reducing Cu(II) in alkaline system by glucose at 50℃. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and tr...Cu2O particles with different shapes were prepared via reducing Cu(II) in alkaline system by glucose at 50℃. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is found that the shape of Cu2O particles changes with the change of concentration of NaOH. The different shapes of Cu2O particles are due to the absorption of OH- ions on Cu2O particles, which arise the variety of growth mode of Cu2O, and then influence the morphology of Cu2O particles.展开更多
The high temperature(HT)thermal stability and mechanical properties of Al-5%Cu(AC)and Al-5%Cu-0.2%Mn-0.2 Zr%(ACMZ)alloys from 573 to 673 K were systematically studied.The results displayed that micro-alloying addition...The high temperature(HT)thermal stability and mechanical properties of Al-5%Cu(AC)and Al-5%Cu-0.2%Mn-0.2 Zr%(ACMZ)alloys from 573 to 673 K were systematically studied.The results displayed that micro-alloying additions of Zr and Mn elements have presented a significant role in stabilizing the main strengthening metastableθ′precipitates at a temperature as high as 573 K.Simultaneously,the HT tensile test demonstrated that ACMZ alloy retained their strength of(88.6±8.8)MPa,which was much higher than that of AC alloy((32.5±0.8)MPa)after the thermal exposure at 573 K for 200 h.Finally,the underlying mechanisms of strength and ductility enhancement mechanism of the ACMZ alloy at HT were discussed in detail.展开更多
A mixed culture of moderately thermophilic microorganisms was enriched from acid mine drainages(AMDs)samples collected from several sulphide mines in China,and the bioleaching of chalcopyrite was conducted both in sha...A mixed culture of moderately thermophilic microorganisms was enriched from acid mine drainages(AMDs)samples collected from several sulphide mines in China,and the bioleaching of chalcopyrite was conducted both in shake flask and bioreactor.The results show that in the shake flask,the mixture can tolerate 50 g/L chalcopyrite after being acclimated to gradually increased concentrations of chalcopyrite.The copper extraction increases obviously in bioleaching of chalcopyrite with moderately thermophilic microorganisms supplemented with 0.4 g/L yeast extract at 180 r/min,74% copper can be extracted in the pulp of 50 g/L chalcopyrite after 20 d.Compared with copper extractions of mesophilic culture,unacclimated culture and acclimated culture without addition of yeast extract,that of accliniated culture with addition of yeast extract is increased by 53%,44% and 16%,respectively.In a completely stirred tank reactor,the mass fraction of copper and total iron extraction reach up to 81% and 56%,respectively.The results also indicate that it is necessary to add a large amount of acid to the pulp to extract copper from chalcopyrite effectively.展开更多
Copper complexing ligands concentration (C C) and conditional stability constant of the sea surface microlayer (SML) and subsurface layer (SSL) samples, collected from Daya Bay of Guangdong Province and Jiaozhou Bay o...Copper complexing ligands concentration (C C) and conditional stability constant of the sea surface microlayer (SML) and subsurface layer (SSL) samples, collected from Daya Bay of Guangdong Province and Jiaozhou Bay of Shandong Province, were determined by anodic stripping voltammetry (ASV) technique. C C of Daya Bay in the SML ranged from 6.19×10-7 to 3.52×10-7 mol/L. C C of Jiaozhou Bay in the SML ranged from 5.30×10-7 to 3.03×10-7 mol/L in August 1998 and from 3.46×10-7 to 1.36×10-7 mol/L in May 2000. The C C concentrations were higher in all surface microlayer samples, compared with corresponding subsurface samples. The average enrichment factors of copper complexation in the SML observed above were 1.58, 1.41 and 1.56, respectively. The enrichment of C C concentration in the microlayer demonstrated that organic ligands had certain buffer action on the toxicity of the enriched trace metals in the same layer. Conditional stability constants of the SML in Jiaozhou Bay were lower than those of the SSL; however, it showed just opposite for Daya Bay. BOD (biological oxygen demand) and COD (chemical oxygen demand) indicated the organic matter content, also showed enriched in the SML. C C had an obvious relationship with BOD or COD.展开更多
The effects of introducing M.sedula derivatives having different Cu^2+-resistance on bioleaching capacity of a defined consortium(consisting of A.brierleyi DSM1651 and M.hakonensis HO1-1)were studied in column reactor...The effects of introducing M.sedula derivatives having different Cu^2+-resistance on bioleaching capacity of a defined consortium(consisting of A.brierleyi DSM1651 and M.hakonensis HO1-1)were studied in column reactors at 70℃.Introducing M.sedula copA mutant,a copper sensitive derivative,only had negligible effects on bioleaching.While introducing M.sedula ARS50-2,a Cu^2+resistant strain,substantially consolidated bioleaching process,with 27.77%more copper recovered after 58 d of bioleaching.Addition of M.sedula ARS50-2 likely enhanced the sulfur oxidation capacity of consortium after the 24th day under the Cu^2+stress.The majority of extreme thermoacidophiles were attached on minerals surface as indicated by quantitative PCR(qPCR)data.Successions of microbial community of extremely thermoacidophilic consortia that attached on surface of minerals were different from those in leachate.M.hakonensis HO1-1 was the dominant species attached on minerals surface in each column reactor throughout bioleaching process.The sessile M.sedula ARS50-2 remained as a major species till the 34th day.A.brierleyi DSM1651 was the most abundant planktonic species in leachate of each column reactor.These results highlight that higher Cu^2+-resistance is a beneficial trait for extreme thermoacidophiles to process copper minerals.展开更多
In our study we investigated a refractory copper-nickel sulfide ore separation by using a cyclonic-static micro-bubble flotation column (FCSMC). The process mineralogy of the main products was studied. Using a scannin...In our study we investigated a refractory copper-nickel sulfide ore separation by using a cyclonic-static micro-bubble flotation column (FCSMC). The process mineralogy of the main products was studied. Using a scanning electron microscope-energy dispersive system (SEM-EDS) and an X-ray spectrometer the mineral category and content of samples were analyzed. By using a mineral liberation analyzer (MLA) the mineral liberation characteristics were revealed. It is shown that in roughing feed the monomers liberation degree of nickel pyrite and chalcopyrite take up 84.11% and 88.82%, respectively. In tailings, the lost nickel pyrite and chalcopyrite are mainly monomers. Therefore, strengthening the micro-fine particle recovery capacity is the key to increase recovery.展开更多
Most Zn hydrometallurgy factories adopt Cu2SO4 as a dechlorination reagent from zinc solution nowadays, thus much CuCl residue is produced. The existing process of treating this residue is washing with water or sodium...Most Zn hydrometallurgy factories adopt Cu2SO4 as a dechlorination reagent from zinc solution nowadays, thus much CuCl residue is produced. The existing process of treating this residue is washing with water or sodium carbonate solution, which would cause a lot of troubles to water treatment and waste discharge. A method of microwave roasting was adopted for dechlorination of CuCl residue. A 1.5 kW microwave roasting equipment with dust collection and tail gas adsorption systems was set up and applied during the experiment. By investigating the effect of temperature, heat preservation time, moisture content of raw material and grain size of samples on the dechlorination, the optimal experimental condition is obtained. When the samples with 2% moisture and <150 μm grain size are microwave roasted at 400 °C for 2 h, the Cl content turns from 14.27% to 1.35% and the dechlorination rate is as high as 90%, while that with conventional heating is only 60%-80%. The phase change of the roasting process investigated with X-ray diffraction verifies that CuCl in CuCl residue is removed by being transformed into CuO.展开更多
Algal blooms caused by eutrophication in fresh water are one of the major environmental problems in the world. Using biological methods to control algal growth, especially based on allelopathic inhibitory effects of a...Algal blooms caused by eutrophication in fresh water are one of the major environmental problems in the world. Using biological methods to control algal growth, especially based on allelopathic inhibitory effects of aquatic macrophytes on phytoplankton growth, have been received world-wide attention. In this study, the allelopathic activity of the invasive macrophyte, Eichhornia crassipes (water hyacinth), on blue-green algae, Microcystis aeruginosa (PCC7806) was investigated using coexistence assay. Our results showed that water hyacinth had disparate effects on the growth ofM~ aeruginosa (PCC7806) under different initial algal densities. Under lower initial algal density (OD650 = 0.10 and OD650 = 0.05), the algal growth was significantly inhibited by water hyacinth (inhibition ratio was 95.6% and 97.3%, respectively). While it was stimulated at higher initial algal densities (OD650 = 0.20). Water hyacinth inhibited the growth of algae mainly through its root system. Culture water from water hyacinth and aqueous methanol extracts from dry roots samples also showed inhibition effects on algal growth. The inhibition effects increased as the increase of crude extract concentration, suggest that water hyacinth may excrete inhibitory substances from root system and show allelopathic inhibitory potential to the growth ofM. aeruginosa.展开更多
In Argentina, at Central Andes Eastside, Cumbres Calchaquies, Aconquija Range and Ambato Block constitute a mountain chain that erects about 5,000 masl. Its geological story reveals morphotectonic and magmatic process...In Argentina, at Central Andes Eastside, Cumbres Calchaquies, Aconquija Range and Ambato Block constitute a mountain chain that erects about 5,000 masl. Its geological story reveals morphotectonic and magmatic processes are similar to the Pampean Ranges at which they belong to, giving origin to mineralized areas. Geochemical concentrations of trace metals (Cu, Pb, Zn, Mn, Mo, As) in stream sediments are related to the geology and mineral manifestations of the area. Geochemical high average concentration of Cu, Pb and Mo are observed in all ranges. It highlights the presence of As in Cumbres Calchaquies-Aconquija Range and Zn, Mn in the mountains of Aconquija Range-Ambato Block. It was determined that Cu-Zn-Mn complex is adsorbed or precipitated most frequently by Mn oxides. Complex Pb-Zn, Mn-As, Mo-As and Pb-Mo are absorbed by other agents (clay; oxides of Mn, Fe, AI; organic matter).展开更多
Colony morphology is important for Microcystis to sustain a competitive advantage in eutrophic lakes. The mechanism of colony formation in Microcystis is currently unclear. Extracellular polysaccharide (EPS) has bee...Colony morphology is important for Microcystis to sustain a competitive advantage in eutrophic lakes. The mechanism of colony formation in Microcystis is currently unclear. Extracellular polysaccharide (EPS) has been reported to play an important role in cell aggregate formation of some phytoplankton. Microcystis aeruginosa was cultivated under varied abiotic conditions, including different nutrient, light, and temperature conditions, to investigate their effects on EPS production and morphological change. The results show that nutrient concentration and light intensity have great effects on EPS production in M. aeruginosa. There was a considerable increase in EPS production after M. aeruginosa was cultivated in adjusted culture conditions similar to those present in the field (28.9 mg C/L, 1.98 mg N/L, 0.65 mg P/L, light intensity: 100 μtmol/(m2.s)). These results indicate that abiotic factors might be one of the triggers for colony formation in Microcystis.展开更多
Abstract: An optimization study on electrodeposition of copper film from sulfuric acid bath in presence of supercritical carbon dioxide fluid was explored for electronic application. Factors that influence roughness ...Abstract: An optimization study on electrodeposition of copper film from sulfuric acid bath in presence of supercritical carbon dioxide fluid was explored for electronic application. Factors that influence roughness of copper deposit were also discussed. A material property of copper deposition has been considered as a response variable and statistical experimental methods have been used to optimize the process parameters and the response. Effects of various current density, pressure and temperature were investigated to select the optimal operation factors. Scanning electron microscopy and atomic force microscopy were applied to determine average particle sizes and to confirm the characteristic of the metallic film obtained. Box-Behnken design and RSM (response surface methodology) were applied to find the optimal conditions of supercritical electroplating process. Regression model was built by fitting the experimental results with a second-order polynomial and was proved to be statistically significant since the coefficient of determination coefficient (R^2) was 0.9844. The optimal film of deposited can be obtained at current density 0.17 A/dm^2, pressure 186 bar and temperature 31.5 ℃.展开更多
Significant changes in the Raman spectrum of single-layer graphene grown on a copper film were observed after the spontaneous oxidation of the underlying substrate that occurred under ambient conditions. The frequenci...Significant changes in the Raman spectrum of single-layer graphene grown on a copper film were observed after the spontaneous oxidation of the underlying substrate that occurred under ambient conditions. The frequencies of the graphene G and 2D Raman modes were found to undergo red shifts, while the intensities of the two bands change by more than an order of magnitude. To understand the origin of these effects, we further characterized the samples by scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and atomic force microscopy (AFM). The oxidation of the substrate produced an appreciable corrugation in the substrate without disrupting the crystalline order of the graphene overlayer and/or changing the carrier doping level. We explain the red shifts of the Raman frequencies in terms of tensile strain induced by corrugation of the graphene layer. The changes in Raman intensity with oxidation arise from the influence of the thin cuprous oxide film on the efficiency of light coupling with the graphene layer in the Raman scattering process.展开更多
The growth of graphene on oriented (111) copper films has been achieved by atmospheric pressure chemical vapor deposition. The structural properties of as-produced graphene have been investigated by scanning tunneli...The growth of graphene on oriented (111) copper films has been achieved by atmospheric pressure chemical vapor deposition. The structural properties of as-produced graphene have been investigated by scanning tunneling microscopy. Anomalous moir6 superstructures composed of well-defined linear periodic modulations have been observed. We report here on comprehensive and detailed studies of these particular moir6 patterns present in the graphene topography revealing that, in certain conditions, the growth can occur on the oxygen-induced reconstructed copper surface and not directly on the oriented (111) copper film as expected.展开更多
基金Project (20110490594) supported by China Postdoctoral Science Foundation
文摘Flower-like CuO and flower-like CuO/graphene composite were prepared successfully by hydrothermal method. They were characterized by X-ray diffraction, scanning electron microscopy, nitrogen adsorption, temperature-programmed reduction, and thermogravimetric analysis. It is found that the flower-like CuO microspheres, which are composed of CuO nanosheets, possess an average diameter of 4.2 μm and a Brunauer–Emmett–Teller surface area of 12.6 m2/g. Compared with the flower-like CuO, the obtained flower-like CuO/graphene composite shows an enhanced electrochemical performance with a higher capacity of 603 mA-h/g at 0.1 C rate and 382 mA-h/g at 1 C rate, and exhibits a better cycle stability with a high capacity retention of 95.5 % after 50 cycles even though at 1 C rate.
基金Project(51271203)supported by the National Natural Science Foundation of ChinaProject(YSZN2013CLD6)supported by the Nonferrous Metals Science Foundation of HNG-CSU+1 种基金ChinaProject supported by the Program Between the CSC(China Scholarship Council)and the DAAD(German Academic Exchange Service)
文摘Microstructure and texture evolution of Cu-0.23%Al2O3 dispersion strengthened copper alloy, deformed at room temperature or cryogenic temperature, were investigated. The main textures in hot-extruded specimen were Brass {011} 〈211〉 and Cube {100} 〈100〉. Textures of Brass {011} 〈211〉 and Goss {011} 〈100〉 were observed in specimen after deformation at room temperature; while textures of Brass {011} 〈211〉, Goss {011} 〈100〉 and S {123} 〈634〉 were detected after deformation at cryogenic temperature. It is believed that the additional Al2O3 nanoparticles can result in dislocation pinning effect, which can further lead to the suppression of dislocations cross-slip. While in the specimen deformed at cryogenic temperature, both pinning effect and cryogenic temperature are responsible for the formation of Brass, Goss and S textures.
基金Projects(51271090,51364036,51471083)supported by the National Natural Science Foundation of ChinaProject(IRT0730)supported by the Program for Changjiang Scholars and Innovative Research Team in University,China+1 种基金Project(NCET-10-0184)supported by the Program for New Century Excellent Talents in University,ChinaProject(20103601110001)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘Graphite brasses were prepared by graphitizing annealing of cast brasses containing cementite particles,which were in-situ formed during the fasting process.The eutectic cast iron as carbon source was added into common brasses by casting.SEM and EDS were used to analyze the microstructure of graphite brasses,and the relationship between the microstructure and machinability was investigated.The results show that graphite particles are formed by the decomposition of cementite particles in cast brasses.The graphite particles are uniformly dispersed in the brass matrix with the average size of 5.0 μm and the volume fraction of ~1.1%.The machinability in the graphite brass is dramatically increased relative to the common brass,because of the lubricating properties of graphite particles and its role in chip breaking.The workpiece surface of the graphite brasses chips is smooth and burr-free,and the chips of graphite brasses are short(C-shape) and discontinuous,which is much better than that of the long spiral chips of common brasses.
基金supported by the National Natural Science Foundation of China(21173105,21172098)~~
文摘Flower-like 3D CuO microspheres were synthesized and used to photo-catalyze water oxidation under visible light.The structure of the CuO microspheres was characterized by scanning electron microscopy,transmission electron microscopy,infrared,powder X-ray diffraction,electron dispersive spectroscopy,Raman and X-ray photoelectron spectroscopy(XPS).This is the first time that a copper oxide was demonstrated as a photocatalytic water oxidation catalyst under near neutral conditions.The catalytic activity of CuO microspheres in borate buffer shows the best performance with O2 yield of 11.5%.No change in the surface properties of CuO before and after the photocatalytic reaction was seen by XPS,which showed good catalyst stability.A photocatalytic water oxidation reaction mechanism catalyzed by the CuO microspheres was proposed.
基金Supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(No.2012BAC13B05)Science and Technology Foundation of Beijing Municipal Research Institute of Environmental Protection(No.2013B05)
文摘Allelopathic effects of submerged macrophytes against algae are affected by many environmental factors which can only be measured one by one by traditional methods. Box-Behnken design of response surface methodology was used to optimize three environmental factors (temperature, light intensity and total dissolved solids) of allelopathic effects of Potarnogeton pectinatus against Microcystis aeruginosa at the same time. By solving the regression equation and analyzing the response surface contour plots, the optimal conditions of the relatively inhibitory rate of Microcystis aeruginosa were that the temperature was 23℃, the light intensity was 2 700 lx and the total dissolved solids were 4 415 mg/L. Under these conditions, the optimal value of relatively inhibitory rate of Microcystis aeruginosa was 81.9%. According to validation experiments, the results of analysis indicated that the experimental values fitted well with the predicted ones.
基金Project(50674100) supported by the National Nature Science Foundation of China
文摘Cu2O particles with different shapes were prepared via reducing Cu(II) in alkaline system by glucose at 50℃. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is found that the shape of Cu2O particles changes with the change of concentration of NaOH. The different shapes of Cu2O particles are due to the absorption of OH- ions on Cu2O particles, which arise the variety of growth mode of Cu2O, and then influence the morphology of Cu2O particles.
基金financial supports from the National Natural Science Foundation of China(No.52071207)the China Postdoctoral Science Foundation(Nos.2019TQ0193,2019M661497)+1 种基金the National Key Research and Development Program of China(No.2018YFB1106302)Anhui Provincial Engineering Research Center of Aluminum Matrix Composites,China(No.2017WAMC002)。
文摘The high temperature(HT)thermal stability and mechanical properties of Al-5%Cu(AC)and Al-5%Cu-0.2%Mn-0.2 Zr%(ACMZ)alloys from 573 to 673 K were systematically studied.The results displayed that micro-alloying additions of Zr and Mn elements have presented a significant role in stabilizing the main strengthening metastableθ′precipitates at a temperature as high as 573 K.Simultaneously,the HT tensile test demonstrated that ACMZ alloy retained their strength of(88.6±8.8)MPa,which was much higher than that of AC alloy((32.5±0.8)MPa)after the thermal exposure at 573 K for 200 h.Finally,the underlying mechanisms of strength and ductility enhancement mechanism of the ACMZ alloy at HT were discussed in detail.
基金Project(50621063, 40646029) supported by the National Natural Science Foundation of ChinaProject (2004CB619204) supported by the National Basic Research Program
文摘A mixed culture of moderately thermophilic microorganisms was enriched from acid mine drainages(AMDs)samples collected from several sulphide mines in China,and the bioleaching of chalcopyrite was conducted both in shake flask and bioreactor.The results show that in the shake flask,the mixture can tolerate 50 g/L chalcopyrite after being acclimated to gradually increased concentrations of chalcopyrite.The copper extraction increases obviously in bioleaching of chalcopyrite with moderately thermophilic microorganisms supplemented with 0.4 g/L yeast extract at 180 r/min,74% copper can be extracted in the pulp of 50 g/L chalcopyrite after 20 d.Compared with copper extractions of mesophilic culture,unacclimated culture and acclimated culture without addition of yeast extract,that of accliniated culture with addition of yeast extract is increased by 53%,44% and 16%,respectively.In a completely stirred tank reactor,the mass fraction of copper and total iron extraction reach up to 81% and 56%,respectively.The results also indicate that it is necessary to add a large amount of acid to the pulp to extract copper from chalcopyrite effectively.
基金Supported by subproject of the China’s "Ninth Five Year Plan" Scientific Research Project No. 97-926-04-03 the Natural Science Foundation of China (No. 40076020, 40376022) the Doctoral Research Program of Higher Education (No. 98042304) and KZ95T-04-04-04 Fund.
文摘Copper complexing ligands concentration (C C) and conditional stability constant of the sea surface microlayer (SML) and subsurface layer (SSL) samples, collected from Daya Bay of Guangdong Province and Jiaozhou Bay of Shandong Province, were determined by anodic stripping voltammetry (ASV) technique. C C of Daya Bay in the SML ranged from 6.19×10-7 to 3.52×10-7 mol/L. C C of Jiaozhou Bay in the SML ranged from 5.30×10-7 to 3.03×10-7 mol/L in August 1998 and from 3.46×10-7 to 1.36×10-7 mol/L in May 2000. The C C concentrations were higher in all surface microlayer samples, compared with corresponding subsurface samples. The average enrichment factors of copper complexation in the SML observed above were 1.58, 1.41 and 1.56, respectively. The enrichment of C C concentration in the microlayer demonstrated that organic ligands had certain buffer action on the toxicity of the enriched trace metals in the same layer. Conditional stability constants of the SML in Jiaozhou Bay were lower than those of the SSL; however, it showed just opposite for Daya Bay. BOD (biological oxygen demand) and COD (chemical oxygen demand) indicated the organic matter content, also showed enriched in the SML. C C had an obvious relationship with BOD or COD.
基金Project(207154)supported by the Postdoctoral Research Funding of Central South University,ChinaProjects(31470230,51320105006,51604308)supported by the National Natural Science Foundation of China+2 种基金Project(2017RS3003)supported by the Youth Talent Foundation of Hunan Province,ChinaProject(2018JJ2486)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2018WK2012)supported by the Key Research and Development Projects in Hunan Province,China。
文摘The effects of introducing M.sedula derivatives having different Cu^2+-resistance on bioleaching capacity of a defined consortium(consisting of A.brierleyi DSM1651 and M.hakonensis HO1-1)were studied in column reactors at 70℃.Introducing M.sedula copA mutant,a copper sensitive derivative,only had negligible effects on bioleaching.While introducing M.sedula ARS50-2,a Cu^2+resistant strain,substantially consolidated bioleaching process,with 27.77%more copper recovered after 58 d of bioleaching.Addition of M.sedula ARS50-2 likely enhanced the sulfur oxidation capacity of consortium after the 24th day under the Cu^2+stress.The majority of extreme thermoacidophiles were attached on minerals surface as indicated by quantitative PCR(qPCR)data.Successions of microbial community of extremely thermoacidophilic consortia that attached on surface of minerals were different from those in leachate.M.hakonensis HO1-1 was the dominant species attached on minerals surface in each column reactor throughout bioleaching process.The sessile M.sedula ARS50-2 remained as a major species till the 34th day.A.brierleyi DSM1651 was the most abundant planktonic species in leachate of each column reactor.These results highlight that higher Cu^2+-resistance is a beneficial trait for extreme thermoacidophiles to process copper minerals.
基金Projects 2008BAB31B01 supported by the National Key Technology R&D Program in the 11th Five-Year Plan of China50834006 by the National Natural Science Foundation of China
文摘In our study we investigated a refractory copper-nickel sulfide ore separation by using a cyclonic-static micro-bubble flotation column (FCSMC). The process mineralogy of the main products was studied. Using a scanning electron microscope-energy dispersive system (SEM-EDS) and an X-ray spectrometer the mineral category and content of samples were analyzed. By using a mineral liberation analyzer (MLA) the mineral liberation characteristics were revealed. It is shown that in roughing feed the monomers liberation degree of nickel pyrite and chalcopyrite take up 84.11% and 88.82%, respectively. In tailings, the lost nickel pyrite and chalcopyrite are mainly monomers. Therefore, strengthening the micro-fine particle recovery capacity is the key to increase recovery.
基金Project(51104073)supported by the National Natural Science Foundation of China
文摘Most Zn hydrometallurgy factories adopt Cu2SO4 as a dechlorination reagent from zinc solution nowadays, thus much CuCl residue is produced. The existing process of treating this residue is washing with water or sodium carbonate solution, which would cause a lot of troubles to water treatment and waste discharge. A method of microwave roasting was adopted for dechlorination of CuCl residue. A 1.5 kW microwave roasting equipment with dust collection and tail gas adsorption systems was set up and applied during the experiment. By investigating the effect of temperature, heat preservation time, moisture content of raw material and grain size of samples on the dechlorination, the optimal experimental condition is obtained. When the samples with 2% moisture and <150 μm grain size are microwave roasted at 400 °C for 2 h, the Cl content turns from 14.27% to 1.35% and the dechlorination rate is as high as 90%, while that with conventional heating is only 60%-80%. The phase change of the roasting process investigated with X-ray diffraction verifies that CuCl in CuCl residue is removed by being transformed into CuO.
文摘Algal blooms caused by eutrophication in fresh water are one of the major environmental problems in the world. Using biological methods to control algal growth, especially based on allelopathic inhibitory effects of aquatic macrophytes on phytoplankton growth, have been received world-wide attention. In this study, the allelopathic activity of the invasive macrophyte, Eichhornia crassipes (water hyacinth), on blue-green algae, Microcystis aeruginosa (PCC7806) was investigated using coexistence assay. Our results showed that water hyacinth had disparate effects on the growth ofM~ aeruginosa (PCC7806) under different initial algal densities. Under lower initial algal density (OD650 = 0.10 and OD650 = 0.05), the algal growth was significantly inhibited by water hyacinth (inhibition ratio was 95.6% and 97.3%, respectively). While it was stimulated at higher initial algal densities (OD650 = 0.20). Water hyacinth inhibited the growth of algae mainly through its root system. Culture water from water hyacinth and aqueous methanol extracts from dry roots samples also showed inhibition effects on algal growth. The inhibition effects increased as the increase of crude extract concentration, suggest that water hyacinth may excrete inhibitory substances from root system and show allelopathic inhibitory potential to the growth ofM. aeruginosa.
文摘In Argentina, at Central Andes Eastside, Cumbres Calchaquies, Aconquija Range and Ambato Block constitute a mountain chain that erects about 5,000 masl. Its geological story reveals morphotectonic and magmatic processes are similar to the Pampean Ranges at which they belong to, giving origin to mineralized areas. Geochemical concentrations of trace metals (Cu, Pb, Zn, Mn, Mo, As) in stream sediments are related to the geology and mineral manifestations of the area. Geochemical high average concentration of Cu, Pb and Mo are observed in all ranges. It highlights the presence of As in Cumbres Calchaquies-Aconquija Range and Zn, Mn in the mountains of Aconquija Range-Ambato Block. It was determined that Cu-Zn-Mn complex is adsorbed or precipitated most frequently by Mn oxides. Complex Pb-Zn, Mn-As, Mo-As and Pb-Mo are absorbed by other agents (clay; oxides of Mn, Fe, AI; organic matter).
基金Supported by the National Natural Science Foundation of China (No.31200296)the CAS International Partnership Creative Group (No.KZZD-EW-TZ-08-01)
文摘Colony morphology is important for Microcystis to sustain a competitive advantage in eutrophic lakes. The mechanism of colony formation in Microcystis is currently unclear. Extracellular polysaccharide (EPS) has been reported to play an important role in cell aggregate formation of some phytoplankton. Microcystis aeruginosa was cultivated under varied abiotic conditions, including different nutrient, light, and temperature conditions, to investigate their effects on EPS production and morphological change. The results show that nutrient concentration and light intensity have great effects on EPS production in M. aeruginosa. There was a considerable increase in EPS production after M. aeruginosa was cultivated in adjusted culture conditions similar to those present in the field (28.9 mg C/L, 1.98 mg N/L, 0.65 mg P/L, light intensity: 100 μtmol/(m2.s)). These results indicate that abiotic factors might be one of the triggers for colony formation in Microcystis.
文摘Abstract: An optimization study on electrodeposition of copper film from sulfuric acid bath in presence of supercritical carbon dioxide fluid was explored for electronic application. Factors that influence roughness of copper deposit were also discussed. A material property of copper deposition has been considered as a response variable and statistical experimental methods have been used to optimize the process parameters and the response. Effects of various current density, pressure and temperature were investigated to select the optimal operation factors. Scanning electron microscopy and atomic force microscopy were applied to determine average particle sizes and to confirm the characteristic of the metallic film obtained. Box-Behnken design and RSM (response surface methodology) were applied to find the optimal conditions of supercritical electroplating process. Regression model was built by fitting the experimental results with a second-order polynomial and was proved to be statistically significant since the coefficient of determination coefficient (R^2) was 0.9844. The optimal film of deposited can be obtained at current density 0.17 A/dm^2, pressure 186 bar and temperature 31.5 ℃.
文摘Significant changes in the Raman spectrum of single-layer graphene grown on a copper film were observed after the spontaneous oxidation of the underlying substrate that occurred under ambient conditions. The frequencies of the graphene G and 2D Raman modes were found to undergo red shifts, while the intensities of the two bands change by more than an order of magnitude. To understand the origin of these effects, we further characterized the samples by scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and atomic force microscopy (AFM). The oxidation of the substrate produced an appreciable corrugation in the substrate without disrupting the crystalline order of the graphene overlayer and/or changing the carrier doping level. We explain the red shifts of the Raman frequencies in terms of tensile strain induced by corrugation of the graphene layer. The changes in Raman intensity with oxidation arise from the influence of the thin cuprous oxide film on the efficiency of light coupling with the graphene layer in the Raman scattering process.
文摘The growth of graphene on oriented (111) copper films has been achieved by atmospheric pressure chemical vapor deposition. The structural properties of as-produced graphene have been investigated by scanning tunneling microscopy. Anomalous moir6 superstructures composed of well-defined linear periodic modulations have been observed. We report here on comprehensive and detailed studies of these particular moir6 patterns present in the graphene topography revealing that, in certain conditions, the growth can occur on the oxygen-induced reconstructed copper surface and not directly on the oriented (111) copper film as expected.