Al 7075 and Mg AZ31 alloys were joined by diffusion bonding method. Joining process was performed in pressure range of 10-35 MPa at temperatures of 430-450 ℃ for 60 min under a vacuum of 13.3 MPa. The microstructure ...Al 7075 and Mg AZ31 alloys were joined by diffusion bonding method. Joining process was performed in pressure range of 10-35 MPa at temperatures of 430-450 ℃ for 60 min under a vacuum of 13.3 MPa. The microstructure evaluation, phase analysis and distribution of elements at the interface were done using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The pressure of 25 MPa was determined as the optimum pressure in which the minimum amount of plastic deformation takes place at the joint. Different reaction layers containing intermetallic compounds, such as Al12Mg17, Al3Mg2 andα(Al) solid solution, were observed, in interfacial transition zone (ITZ). Thickness of layers was increased with increasing the operating temperature. According to the results, diffusion of aluminum atoms into magnesium alloy was more and the interface movement towards the Al alloy was observed. The maximum bond strength of 38 MPa was achieved at the temperature of 440 ℃ and pressure of 25 MPa. Fractography studies indicated that the brittle fracture originated from Al3Mg2 phase.展开更多
Microstructure and mechanical properties of the heat affected zone(HAZ)in multi-pass gas metal arc(GMA)welded Al Zn Mg Cu alloy plates were investigated,based upon which the mechanical anisotropy and fracture mechanis...Microstructure and mechanical properties of the heat affected zone(HAZ)in multi-pass gas metal arc(GMA)welded Al Zn Mg Cu alloy plates were investigated,based upon which the mechanical anisotropy and fracture mechanism were analyzed.The microstructure and composition were analyzed by scanning electron microscope(SEM)and energy dispersive spectroscope(EDS).X-ray diffractometer(XRD),transmission electron microscope(TEM)and selective area electron diffraction(SAED)were used to analyze the phase composition.The distribution of microhardness was identified as gradual transition and tensile strength had a tendency to decrease first and then increase.The distribution of nano-sizedη(MgZn2)particles in theα(Al)matrix and Al2MgCu phase determined the tensile performances along the thickness direction and led to the formation of ductile/brittle composite fracture in the HAZ.The continuous distribution of Al2MgCu phase in the strip intergranular precipitates gave birth to premature cracks and the brittle fracture region.The precipitated particles coarsening also led to the deterioration of mechanical properties.展开更多
In this study,nano-graphene reinforced titanium matrix composites(GNPs/Ti)with a honeycomb porous structure were fabricated by selective laser melting(SLM).The effects of graphene on the microstructure,mechanical prop...In this study,nano-graphene reinforced titanium matrix composites(GNPs/Ti)with a honeycomb porous structure were fabricated by selective laser melting(SLM).The effects of graphene on the microstructure,mechanical properties and corrosion performance of the SLM GNPs/Ti were systematically investigated.Results of microstructure characterization show that:1)the density of the SLM GNPs/Ti was improved as compared to that of the SLM Ti;2)abundant TiC particles were formed in the SLM GNPs/Ti.The hardness and compressive strength of the composite increased by 90%(from HV 236 to HV 503)and 14%(from 277 MPa to 316 MPa),respectively,attributed to the uniformly distributed TiC and fine GNPs in the Ti matrix.Electrochemical tests reveal that the corrosion current density of the SLM GNPs/Ti is only 0.328μA/cm^(2),that is about 25%less than that of the SLM Ti.The results indicate that the incorporation of nano-graphene is a potential method to strengthen the Ti by SLM.展开更多
The grout-rock interfacial property is one of the key factors associated with the strength of grouted rock masses.In this study,direct shear tests and nanoindentation tests were adopted to investigate the mechanical p...The grout-rock interfacial property is one of the key factors associated with the strength of grouted rock masses.In this study,direct shear tests and nanoindentation tests were adopted to investigate the mechanical properties of the grout-rock interface at both the macroscale and microscale.The cohesion of the cement specimens was higher than that of the grout-infilled joint specimens,while their internal friction angle was lower than that of the grout-infilled joint specimens.A“separation method”for identifying the different phases according to the qualitative and quantitative estimations was introduced,and the irregular interfacial transition zone(ITZ)thickness and elastic modulus were estimated.The ITZ thickness of the grout-infilled sandstone specimen ranged from 0 to 30μm,whereas it was within the range of 10-40μm for the grout-infilled mudstone specimen.The average elastic modulus of the ITZ in grout-infilled sandstone and mudstone specimens was approximately 58.2%and 54.1%lower than that of the bulk grout,respectively.Regarding the incidence of the rock type,the interlacing between the grout and sandstone was better developed.The ITZ with a higher porosity and lower modulus had a significant effect on the mechanical properties of the grout-infilled specimens.展开更多
文摘Al 7075 and Mg AZ31 alloys were joined by diffusion bonding method. Joining process was performed in pressure range of 10-35 MPa at temperatures of 430-450 ℃ for 60 min under a vacuum of 13.3 MPa. The microstructure evaluation, phase analysis and distribution of elements at the interface were done using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The pressure of 25 MPa was determined as the optimum pressure in which the minimum amount of plastic deformation takes place at the joint. Different reaction layers containing intermetallic compounds, such as Al12Mg17, Al3Mg2 andα(Al) solid solution, were observed, in interfacial transition zone (ITZ). Thickness of layers was increased with increasing the operating temperature. According to the results, diffusion of aluminum atoms into magnesium alloy was more and the interface movement towards the Al alloy was observed. The maximum bond strength of 38 MPa was achieved at the temperature of 440 ℃ and pressure of 25 MPa. Fractography studies indicated that the brittle fracture originated from Al3Mg2 phase.
基金Project(51905126) supported by the National Natural Science Foundation of ChinaProject(2018M641822) supported by the China Postdoctoral Science Foundation-General ProgramProject(HIT.NSRIF.201703) supported by the Natural Scientific Research Innovation Foundation in HIT,China
文摘Microstructure and mechanical properties of the heat affected zone(HAZ)in multi-pass gas metal arc(GMA)welded Al Zn Mg Cu alloy plates were investigated,based upon which the mechanical anisotropy and fracture mechanism were analyzed.The microstructure and composition were analyzed by scanning electron microscope(SEM)and energy dispersive spectroscope(EDS).X-ray diffractometer(XRD),transmission electron microscope(TEM)and selective area electron diffraction(SAED)were used to analyze the phase composition.The distribution of microhardness was identified as gradual transition and tensile strength had a tendency to decrease first and then increase.The distribution of nano-sizedη(MgZn2)particles in theα(Al)matrix and Al2MgCu phase determined the tensile performances along the thickness direction and led to the formation of ductile/brittle composite fracture in the HAZ.The continuous distribution of Al2MgCu phase in the strip intergranular precipitates gave birth to premature cracks and the brittle fracture region.The precipitated particles coarsening also led to the deterioration of mechanical properties.
基金Projects(51504191,51671152,51874225)supported by the National Natural Science Foundation of ChinaProject(2019GY-188)supported by the Key R&D Projects of Shaanxi,China+2 种基金Project(18JC019)supported by the Industrialization Project of Shaanxi Education Department,ChinaProject(PMMSLKL-901)supported by the State Key Laboratory of Metal Porous Materials,ChinaProject(2020ZDLGY13-10)supported by the Science&Technology Project of Shaanxi,China。
文摘In this study,nano-graphene reinforced titanium matrix composites(GNPs/Ti)with a honeycomb porous structure were fabricated by selective laser melting(SLM).The effects of graphene on the microstructure,mechanical properties and corrosion performance of the SLM GNPs/Ti were systematically investigated.Results of microstructure characterization show that:1)the density of the SLM GNPs/Ti was improved as compared to that of the SLM Ti;2)abundant TiC particles were formed in the SLM GNPs/Ti.The hardness and compressive strength of the composite increased by 90%(from HV 236 to HV 503)and 14%(from 277 MPa to 316 MPa),respectively,attributed to the uniformly distributed TiC and fine GNPs in the Ti matrix.Electrochemical tests reveal that the corrosion current density of the SLM GNPs/Ti is only 0.328μA/cm^(2),that is about 25%less than that of the SLM Ti.The results indicate that the incorporation of nano-graphene is a potential method to strengthen the Ti by SLM.
基金Project(52004144)supported by the National Natural Science Foundation of ChinaProject supported by the Shandong Province Higher Educational Young Innovative Talent Introduction and Cultivation Team,China。
文摘The grout-rock interfacial property is one of the key factors associated with the strength of grouted rock masses.In this study,direct shear tests and nanoindentation tests were adopted to investigate the mechanical properties of the grout-rock interface at both the macroscale and microscale.The cohesion of the cement specimens was higher than that of the grout-infilled joint specimens,while their internal friction angle was lower than that of the grout-infilled joint specimens.A“separation method”for identifying the different phases according to the qualitative and quantitative estimations was introduced,and the irregular interfacial transition zone(ITZ)thickness and elastic modulus were estimated.The ITZ thickness of the grout-infilled sandstone specimen ranged from 0 to 30μm,whereas it was within the range of 10-40μm for the grout-infilled mudstone specimen.The average elastic modulus of the ITZ in grout-infilled sandstone and mudstone specimens was approximately 58.2%and 54.1%lower than that of the bulk grout,respectively.Regarding the incidence of the rock type,the interlacing between the grout and sandstone was better developed.The ITZ with a higher porosity and lower modulus had a significant effect on the mechanical properties of the grout-infilled specimens.