在第四代反应堆中,核石墨作为慢化体和反射体材料服役于高温和高通量的快中子辐照环境中。快中子辐照会在核石墨中产生大量的弗伦克尔缺陷对。这些缺陷经过湮灭、扩散、最终形成更大的缺陷团簇,从而改变核石墨的微观结构,进而改变核石...在第四代反应堆中,核石墨作为慢化体和反射体材料服役于高温和高通量的快中子辐照环境中。快中子辐照会在核石墨中产生大量的弗伦克尔缺陷对。这些缺陷经过湮灭、扩散、最终形成更大的缺陷团簇,从而改变核石墨的微观结构,进而改变核石墨的宏观性能。因此,研究核石墨在高温辐照条件下的缺陷演化行为和机理对提高反应堆安全性具有重要意义。本研究采用30 MeV的^(107)Ag^(5+)离子在420℃下辐照IG-110核石墨来模拟核石墨在快中子辐照过程中的缺陷演化行为。通过微区拉曼光谱对IG-110核石墨截面结构进行表征,并对比不同深度处的拉曼光谱特征参数和辐照损伤剂量之间的关系,研究IG-110核石墨微观结构随辐照损伤剂量(Displacements Per Atom,DPA)的演化行为。研究结果表明,随着注量的增加,核石墨拉曼光谱的特征参数D峰高度与G峰高度比值(I_(D)/I_(G))、G峰半高宽(Full Width at Half Maximum of the G peak,FWHM(G))以及G峰的偏移量都显著增加。与^(58)Ni^(5+)辐照样品相比,相同辐照损伤剂量下,^(107)Ag^(5+)辐照的石墨拉曼光谱的I_(D)/I_(G)和FWHM(G)更大。相同的FWHM(G)下,^(107)Ag^(5+)辐照的石墨拉曼光谱的I_(D)/I_(G)比^(58)Ni^(5+)辐照样品大。这些结果说明更重的重离子辐照会在核石墨中引起更高速率的缺陷积累,从而更快地导致石墨晶粒尺寸变小,并促进纳米晶化进程。展开更多
文摘在第四代反应堆中,核石墨作为慢化体和反射体材料服役于高温和高通量的快中子辐照环境中。快中子辐照会在核石墨中产生大量的弗伦克尔缺陷对。这些缺陷经过湮灭、扩散、最终形成更大的缺陷团簇,从而改变核石墨的微观结构,进而改变核石墨的宏观性能。因此,研究核石墨在高温辐照条件下的缺陷演化行为和机理对提高反应堆安全性具有重要意义。本研究采用30 MeV的^(107)Ag^(5+)离子在420℃下辐照IG-110核石墨来模拟核石墨在快中子辐照过程中的缺陷演化行为。通过微区拉曼光谱对IG-110核石墨截面结构进行表征,并对比不同深度处的拉曼光谱特征参数和辐照损伤剂量之间的关系,研究IG-110核石墨微观结构随辐照损伤剂量(Displacements Per Atom,DPA)的演化行为。研究结果表明,随着注量的增加,核石墨拉曼光谱的特征参数D峰高度与G峰高度比值(I_(D)/I_(G))、G峰半高宽(Full Width at Half Maximum of the G peak,FWHM(G))以及G峰的偏移量都显著增加。与^(58)Ni^(5+)辐照样品相比,相同辐照损伤剂量下,^(107)Ag^(5+)辐照的石墨拉曼光谱的I_(D)/I_(G)和FWHM(G)更大。相同的FWHM(G)下,^(107)Ag^(5+)辐照的石墨拉曼光谱的I_(D)/I_(G)比^(58)Ni^(5+)辐照样品大。这些结果说明更重的重离子辐照会在核石墨中引起更高速率的缺陷积累,从而更快地导致石墨晶粒尺寸变小,并促进纳米晶化进程。
文摘作为热结构材料,陶瓷基复合材料(ceramic matrix composites,CMC)在航空航天领域应用潜力巨大。连续纤维的引入解决了陶瓷脆性大的问题,而纤维与基体间微小区域——界面层的设计是保证CMC具有高韧性的关键。一直以来相关研究主要集中于界面层与CMC宏观力学性能之间的关系,受限于表征难以深入研究界面层微区力学行为的困难。随着微纳力学测试与聚焦离子束(focused ion beam,FIB)技术的发展,近些年来对于CMC界面层结合强度以及其失效行为的表征逐渐增多。在此基础上,本文综述CMC中界面层的作用以及界面剪切强度的影响因素与调控机制,同时汇总当下通过直接或间接手段测试界面剪切强度的方法,重点总结微纳力学手段下纤维push-out/push-in以及微柱压缩等方法的适用条件以及差异,报道这些方法在界面区失效机制研究方面的进展,并指明尚存在的一些问题。其中,纤维pushout/push-in可以反映基体应力作用对界面剪切强度的影响,但测试结果可能受到外部因素的影响;而微柱压缩测试则更多地反映界面层本征特性,无法反映基体应力对界面剪切强度的影响,也无法反映纤维拔出过程。最后展望未来的研究方向:进一步拓展界面微区力学行为的表征方法,同时确定微区力学与宏观力学性能间的影响机制并建立模型,最终实现CMC的界面层优化。