近年来,主题情感联合模型成为了无监督学习领域的一项重要研究内容,在文本主题挖掘和情感分析等方面均有实际应用。然而,在现实场景中,微博因其文字短小、结构不完整等特征,给主题情感联合模型带来了一定的挑战。因此,围绕微博主题情感...近年来,主题情感联合模型成为了无监督学习领域的一项重要研究内容,在文本主题挖掘和情感分析等方面均有实际应用。然而,在现实场景中,微博因其文字短小、结构不完整等特征,给主题情感联合模型带来了一定的挑战。因此,围绕微博主题情感模型展开相关的研究与改进工作,目前较为流行的主题情感模型——TSMMF模型(Topic Sentiment Model Based on Multi-feature Fusion)中引入了词向量技术,运用多元高斯分布从词向量空间中快速采样邻近词语,并替换掉原Dirichlet多项式分布产生的单词,从而将共现频率低、信息量少的单词转变成突出主题、信息明确的单词,同时使用最近邻搜索算法来进一步提升模型处理大型微博语料库的运行速度,进而提出了GWE-TSMMF模型。对比实验结果表明,GWE-TSMMF模型的平均F1值约为0.718,相比原模型和现有的主流词嵌入主题情感模型(WS-TSWE模型和HST-SCW模型),其微博情感极性的分析效果均有显著提升。展开更多
文摘近年来,主题情感联合模型成为了无监督学习领域的一项重要研究内容,在文本主题挖掘和情感分析等方面均有实际应用。然而,在现实场景中,微博因其文字短小、结构不完整等特征,给主题情感联合模型带来了一定的挑战。因此,围绕微博主题情感模型展开相关的研究与改进工作,目前较为流行的主题情感模型——TSMMF模型(Topic Sentiment Model Based on Multi-feature Fusion)中引入了词向量技术,运用多元高斯分布从词向量空间中快速采样邻近词语,并替换掉原Dirichlet多项式分布产生的单词,从而将共现频率低、信息量少的单词转变成突出主题、信息明确的单词,同时使用最近邻搜索算法来进一步提升模型处理大型微博语料库的运行速度,进而提出了GWE-TSMMF模型。对比实验结果表明,GWE-TSMMF模型的平均F1值约为0.718,相比原模型和现有的主流词嵌入主题情感模型(WS-TSWE模型和HST-SCW模型),其微博情感极性的分析效果均有显著提升。