期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于二元搭配词的微博情感特征选择 被引量:6
1
作者 周剑峰 阳爱民 +1 位作者 周咏梅 王璇璇 《计算机工程》 CAS CSCD 2014年第6期162-165,共4页
分析和监测微博文本中所包含的情感信息,能够挖掘用户行为,为微博舆情监管提供借鉴。但微博文本具有长度较短、不规范、存在大量变形词和新词等特点,仅以情感词为特征对微博进行分类的方法准确率较低,难以满足实际使用。为此,基于微博... 分析和监测微博文本中所包含的情感信息,能够挖掘用户行为,为微博舆情监管提供借鉴。但微博文本具有长度较短、不规范、存在大量变形词和新词等特点,仅以情感词为特征对微博进行分类的方法准确率较低,难以满足实际使用。为此,基于微博语料构建二元搭配词库,并根据PMI-IR算法结合语料库统计信息,提出搭配词组情感权值的计算方法PMI-IR-P。结合情感词典,采用统计方法生成微博情感特征向量,利用机器学习中的C4.5算法构建分类模型,对微博文本进行情感倾向分类。分别使用不同的数据集用于构建搭配词库及分类模型,并与基于情感词典的分类方法以及朴素贝叶斯分类方法进行对比。实验结果表明,提出的情感特征通过运用C4.5算法对微博文本情感分类的准确率达到87%,具有较好的效果。 展开更多
关键词 搭配词库 微博情感特征 微博情感分类 机器学习 C4 5算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部