The molecular structure of a higher plant myosin with two 174 kD heavy chains purified from the tendrils of Luffa cylindrica (L.) Roem. was viewed by electron microscopy. The myosin exhibited actin_activated MgATP...The molecular structure of a higher plant myosin with two 174 kD heavy chains purified from the tendrils of Luffa cylindrica (L.) Roem. was viewed by electron microscopy. The myosin exhibited actin_activated MgATPase activity and could be recognized immunologically by a monoclonal antibody against the skeletal muscle myosin. Electron micrographs of rotary shadowed images of this protein revealed that it had two heads with size and shape similar to those of the skeletal muscle myosin and a relatively short tail in comparison with the conventional myosin. Luffa tendril actin filaments were also visualized and occasionally other Luffa myosin_like proteins with globular structure at the tail ends were also observed. The structural similarity and immunological cross reactivity with antibodies against muscle myosin demonstrate that the 174 kD Luffa tendril myosin is a double_headed myosin. The possible involvement of myosin_actin interactions in Luffa tendril contact coiling will be the subject of further research.展开更多
Microseismic monitoring system is one of the effective methods for deep mining geo-stress monitoring.The principle of microseismic monitoring system is to analyze the mechanical parameters contained in microseismic ev...Microseismic monitoring system is one of the effective methods for deep mining geo-stress monitoring.The principle of microseismic monitoring system is to analyze the mechanical parameters contained in microseismic events for providing accurate information of rockmass.The accurate identification of microseismic events and blasts determines the timeliness and accuracy of early warning of microseismic monitoring technology.An image identification model based on Convolutional Neural Network(CNN)is established in this paper for the seismic waveforms of microseismic events and blasts.Firstly,the training set,test set,and validation set are collected,which are composed of 5250,1500,and 750 seismic waveforms of microseismic events and blasts,respectively.The classified data sets are preprocessed and input into the constructed CNN in CPU mode for training.Results show that the accuracies of microseismic events and blasts are 99.46%and 99.33%in the test set,respectively.The accuracies of microseismic events and blasts are 100%and 98.13%in the validation set,respectively.The proposed method gives superior performance when compared with existed methods.The accuracies of models using logistic regression and artificial neural network(ANN)based on the same data set are 54.43%and 67.9%in the test set,respectively.Then,the ROC curves of the three models are obtained and compared,which show that the CNN gives an absolute advantage in this classification model when the original seismic waveform are used in training the model.It not only decreases the influence of individual differences in experience,but also removes the errors induced by source and waveform parameters.It is proved that the established discriminant method improves the efficiency and accuracy of microseismic data processing for monitoring rock instability and seismicity.展开更多
We theoretically analyze the organizing filament of small amplitude scroll waves in general excitable media by perturbation method and explicitly give the expressions of coefficients in Keener theory. In particular fo...We theoretically analyze the organizing filament of small amplitude scroll waves in general excitable media by perturbation method and explicitly give the expressions of coefficients in Keener theory. In particular for the excitable media with equal diffusion, we obtain a close system for the motion of the filament. With an example of the Oregonator model, our results are in good agreement with those simulated by Winfree.展开更多
The present work aimed to investigate the effect of coiling process conditions on microstructure development in a low-Si content TRIP (transformation-induced plasticity)-assisted steel after thermomechanical process...The present work aimed to investigate the effect of coiling process conditions on microstructure development in a low-Si content TRIP (transformation-induced plasticity)-assisted steel after thermomechanical processing. In this framework, compression samples which were deformed above Tnr and then intercritically annealed were held isothermally for different durations at temperatures below bainite transformation start temperature. Microstructure of samples were characterized by optical and electron microscopy, XRD (X-ray diffraction) and M6ssbauer spectroscopy. The results indicated that due to low-silicon content of the present steel, the incomplete bainite reaction phenomena was not observed and, hence, the maximum carbon enrichment of residual austenite was achieved in the samples which held for short durations. It was also shown that the maximum carbon enrichment and volume fraction of residual austenite were achieved at intermediate bainite hold temperature of 450 ℃ as the result of competing phenomena, such as microstructural refinement, dislocation density, carbide precipitation and growth.展开更多
Micro-coiled carbon fibers were prepared by catalytic pyrolysisof acetylene with nano-sized nickel powder catalyst using the substrate method. The morphology of micro-coiled carbon fibers was observed through field em...Micro-coiled carbon fibers were prepared by catalytic pyrolysisof acetylene with nano-sized nickel powder catalyst using the substrate method. The morphology of micro-coiled carbon fibers was observed through field emission scanning electron microscopy. It was found that the fiber and coil diameter of the obtained micro-coiled carbon fibers is about 500—600 nm and 4—5 μm, respectively. Most of the micro-coiled carbon fibers obtained were regular double carbon coils, but a few irregular ones were also observed. On the basis of the experimental observation, a solid catalytic growth mechanism of micro-coiled carbon fibers was proposed.展开更多
The broad applicability of super-resolution microscopy has been widely demonstrated in various areas and disciplines. The optimization and improvement of algorithms used in super-resolution microscopy are of great imp...The broad applicability of super-resolution microscopy has been widely demonstrated in various areas and disciplines. The optimization and improvement of algorithms used in super-resolution microscopy are of great importance for achieving optimal quality of super-resolution imaging. In this review, we comprehensively discuss the computational methods in different types of super-resolution microscopy, including deconvolution microscopy, polarization-based super-resolution microscopy, structured illumination microscopy, image scanning microscopy, super-resolution optical fluctuation imaging microscopy, single-molecule localization microscopy, Bayesian super-resolution microscopy, stimulated emission depletion microscopy, and translation microscopy. The development of novel computational methods would greatly benefit super-resolution microscopy and lead to better resolution, improved accuracy, and faster image processing.展开更多
The Ring effect refers to the filling in of Fraunhofer lines, which is mainly attributed to the rotational Raman scattering of solar spectra by N2 and O2 molecules in the atmosphere. The Ring effect is one of the most...The Ring effect refers to the filling in of Fraunhofer lines, which is mainly attributed to the rotational Raman scattering of solar spectra by N2 and O2 molecules in the atmosphere. The Ring effect is one of the most significant factors affecting the accuracy of retrieving concentrations of atmospheric trace gases, such as NO2 and SO2, from satellite observations through differential optical absorption spectroscopy. First in this study, the solar spectrum measured by the Ozone Monitoring Instrument onboard NASA Aura is convolved with the rotational Raman cross section of the atmosphere, which is calculated from the rotational Raman cross sections of N2 and O2 molecules, and divided by the original solar spectrum. The slowly varying term is removed by fitting it with a cubic polynomial to obtain the differential Ring spectrum. The results agree well with the calculations using a radiative transfer model (R2=0.9663). Second, the differential Ring spectrum is computed using two fixed wavelengths of 410 nm and 488 nm, and the resulting differential Ring spectra are similar to that calculated with varying wavelengths and agree well with the calculation using the radiative transfer model (R2=0.9624 and 0.9639 respectively). The computation time using the fixed wavelength is about 0.128% of that using a varying wavelength. Finally, we found that the frequency spectrum of the Raman cross sections for the atmosphere, N2 molecules and O2 molecules are similar; thus, the Raman cross section of N2 or O2 molecules can be used to compute the approximate Ring effect for simplicity.展开更多
The single particle energies obtained in a Kohn-Sham density functional theory(DFT) calculation are generally known to be poor approximations to electron excitation energies that are measured in transport,tunneling an...The single particle energies obtained in a Kohn-Sham density functional theory(DFT) calculation are generally known to be poor approximations to electron excitation energies that are measured in transport,tunneling and spectroscopic experiments such as photo-emission spectroscopy. The correction to these energies can be obtained from the poles of a single particle Green's function derived from a many-body perturbation theory. From a computational perspective, the accuracy and efficiency of such an approach depends on how a self energy term that properly accounts for dynamic screening of electrons is approximated. The G_0W_0 approximation is a widely used technique in which the self energy is expressed as the convolution of a noninteracting Green's function(G_0) and a screened Coulomb interaction(W_0) in the frequency domain. The computational cost associated with such a convolution is high due to the high complexity of evaluating W_0 at multiple frequencies. In this paper, we discuss how the cost of G_0W_0 calculation can be reduced by constructing a low rank approximation to the frequency dependent part of W_0. In particular, we examine the effect of such a low rank approximation on the accuracy of the G_0W_0 approximation. We also discuss how the numerical convolution of G_0 and W_0 can be evaluated efficiently and accurately by using a contour deformation technique with an appropriate choice of the contour.展开更多
文摘The molecular structure of a higher plant myosin with two 174 kD heavy chains purified from the tendrils of Luffa cylindrica (L.) Roem. was viewed by electron microscopy. The myosin exhibited actin_activated MgATPase activity and could be recognized immunologically by a monoclonal antibody against the skeletal muscle myosin. Electron micrographs of rotary shadowed images of this protein revealed that it had two heads with size and shape similar to those of the skeletal muscle myosin and a relatively short tail in comparison with the conventional myosin. Luffa tendril actin filaments were also visualized and occasionally other Luffa myosin_like proteins with globular structure at the tail ends were also observed. The structural similarity and immunological cross reactivity with antibodies against muscle myosin demonstrate that the 174 kD Luffa tendril myosin is a double_headed myosin. The possible involvement of myosin_actin interactions in Luffa tendril contact coiling will be the subject of further research.
基金Projects(51822407,51774327,51664016)supported by the National Natural Science Foundation of China。
文摘Microseismic monitoring system is one of the effective methods for deep mining geo-stress monitoring.The principle of microseismic monitoring system is to analyze the mechanical parameters contained in microseismic events for providing accurate information of rockmass.The accurate identification of microseismic events and blasts determines the timeliness and accuracy of early warning of microseismic monitoring technology.An image identification model based on Convolutional Neural Network(CNN)is established in this paper for the seismic waveforms of microseismic events and blasts.Firstly,the training set,test set,and validation set are collected,which are composed of 5250,1500,and 750 seismic waveforms of microseismic events and blasts,respectively.The classified data sets are preprocessed and input into the constructed CNN in CPU mode for training.Results show that the accuracies of microseismic events and blasts are 99.46%and 99.33%in the test set,respectively.The accuracies of microseismic events and blasts are 100%and 98.13%in the validation set,respectively.The proposed method gives superior performance when compared with existed methods.The accuracies of models using logistic regression and artificial neural network(ANN)based on the same data set are 54.43%and 67.9%in the test set,respectively.Then,the ROC curves of the three models are obtained and compared,which show that the CNN gives an absolute advantage in this classification model when the original seismic waveform are used in training the model.It not only decreases the influence of individual differences in experience,but also removes the errors induced by source and waveform parameters.It is proved that the established discriminant method improves the efficiency and accuracy of microseismic data processing for monitoring rock instability and seismicity.
文摘We theoretically analyze the organizing filament of small amplitude scroll waves in general excitable media by perturbation method and explicitly give the expressions of coefficients in Keener theory. In particular for the excitable media with equal diffusion, we obtain a close system for the motion of the filament. With an example of the Oregonator model, our results are in good agreement with those simulated by Winfree.
文摘The present work aimed to investigate the effect of coiling process conditions on microstructure development in a low-Si content TRIP (transformation-induced plasticity)-assisted steel after thermomechanical processing. In this framework, compression samples which were deformed above Tnr and then intercritically annealed were held isothermally for different durations at temperatures below bainite transformation start temperature. Microstructure of samples were characterized by optical and electron microscopy, XRD (X-ray diffraction) and M6ssbauer spectroscopy. The results indicated that due to low-silicon content of the present steel, the incomplete bainite reaction phenomena was not observed and, hence, the maximum carbon enrichment of residual austenite was achieved in the samples which held for short durations. It was also shown that the maximum carbon enrichment and volume fraction of residual austenite were achieved at intermediate bainite hold temperature of 450 ℃ as the result of competing phenomena, such as microstructural refinement, dislocation density, carbide precipitation and growth.
基金This work was supported by the National Natural Science Foundation of China ( Grant Nos. 59902009, 50025204) by the Chinese Academy of Sciences.
文摘Micro-coiled carbon fibers were prepared by catalytic pyrolysisof acetylene with nano-sized nickel powder catalyst using the substrate method. The morphology of micro-coiled carbon fibers was observed through field emission scanning electron microscopy. It was found that the fiber and coil diameter of the obtained micro-coiled carbon fibers is about 500—600 nm and 4—5 μm, respectively. Most of the micro-coiled carbon fibers obtained were regular double carbon coils, but a few irregular ones were also observed. On the basis of the experimental observation, a solid catalytic growth mechanism of micro-coiled carbon fibers was proposed.
基金Project supported by the National Key Foundation for Exploring Scientific Instrument (No. 2013YQ03065102), the National Basic Research Program (973) of China (No. 2012CB316503), and the National Natural Science Foundation of China (Nos. 31327901, 61475010, 31361163004, and 61428501)
文摘The broad applicability of super-resolution microscopy has been widely demonstrated in various areas and disciplines. The optimization and improvement of algorithms used in super-resolution microscopy are of great importance for achieving optimal quality of super-resolution imaging. In this review, we comprehensively discuss the computational methods in different types of super-resolution microscopy, including deconvolution microscopy, polarization-based super-resolution microscopy, structured illumination microscopy, image scanning microscopy, super-resolution optical fluctuation imaging microscopy, single-molecule localization microscopy, Bayesian super-resolution microscopy, stimulated emission depletion microscopy, and translation microscopy. The development of novel computational methods would greatly benefit super-resolution microscopy and lead to better resolution, improved accuracy, and faster image processing.
文摘The Ring effect refers to the filling in of Fraunhofer lines, which is mainly attributed to the rotational Raman scattering of solar spectra by N2 and O2 molecules in the atmosphere. The Ring effect is one of the most significant factors affecting the accuracy of retrieving concentrations of atmospheric trace gases, such as NO2 and SO2, from satellite observations through differential optical absorption spectroscopy. First in this study, the solar spectrum measured by the Ozone Monitoring Instrument onboard NASA Aura is convolved with the rotational Raman cross section of the atmosphere, which is calculated from the rotational Raman cross sections of N2 and O2 molecules, and divided by the original solar spectrum. The slowly varying term is removed by fitting it with a cubic polynomial to obtain the differential Ring spectrum. The results agree well with the calculations using a radiative transfer model (R2=0.9663). Second, the differential Ring spectrum is computed using two fixed wavelengths of 410 nm and 488 nm, and the resulting differential Ring spectra are similar to that calculated with varying wavelengths and agree well with the calculation using the radiative transfer model (R2=0.9624 and 0.9639 respectively). The computation time using the fixed wavelength is about 0.128% of that using a varying wavelength. Finally, we found that the frequency spectrum of the Raman cross sections for the atmosphere, N2 molecules and O2 molecules are similar; thus, the Raman cross section of N2 or O2 molecules can be used to compute the approximate Ring effect for simplicity.
基金supported by the SciD AC Program on Excited State Phenomena in Energy Materials funded by the US Department of Energy,Office of Basic Energy Sciences and of Advanced Scientific Computing Research at Lawrence Berkeley National Laboratory(Grant No.DE-AC02-05CH11231)the Center for Applied Mathematics for Energy Research Applications funded by US Department of Energy,Office of Science,Advanced Scientific Computing Research and Basic Energy Sciences,the Alfred P.Sloan FellowshipNational Natural Science Foundation of China(Grant No.11171232)
文摘The single particle energies obtained in a Kohn-Sham density functional theory(DFT) calculation are generally known to be poor approximations to electron excitation energies that are measured in transport,tunneling and spectroscopic experiments such as photo-emission spectroscopy. The correction to these energies can be obtained from the poles of a single particle Green's function derived from a many-body perturbation theory. From a computational perspective, the accuracy and efficiency of such an approach depends on how a self energy term that properly accounts for dynamic screening of electrons is approximated. The G_0W_0 approximation is a widely used technique in which the self energy is expressed as the convolution of a noninteracting Green's function(G_0) and a screened Coulomb interaction(W_0) in the frequency domain. The computational cost associated with such a convolution is high due to the high complexity of evaluating W_0 at multiple frequencies. In this paper, we discuss how the cost of G_0W_0 calculation can be reduced by constructing a low rank approximation to the frequency dependent part of W_0. In particular, we examine the effect of such a low rank approximation on the accuracy of the G_0W_0 approximation. We also discuss how the numerical convolution of G_0 and W_0 can be evaluated efficiently and accurately by using a contour deformation technique with an appropriate choice of the contour.