MoS_(2)/CuS composite catalysts were successfully synthesized using a one-step hydrothermal method with sodium molybdate dihydrate,thiourea,oxalic acid,and copper nitrate trihydrate as raw materials.The hydrogen pro-d...MoS_(2)/CuS composite catalysts were successfully synthesized using a one-step hydrothermal method with sodium molybdate dihydrate,thiourea,oxalic acid,and copper nitrate trihydrate as raw materials.The hydrogen pro-duction performance of MoS_(2)/CuS prepared with different molar ratios of Mo to Cu precursors(n_(Mo)∶n_(Cu))as cathodic catalysts was investigated in the two-chamber microbial electrolytic cell(MEC).X-ray diffraction(XRD),X-ray pho-toelectron spectroscopy(XPS),scanning electron microscopy(SEM),transmission electron microscope(TEM),linear scanning voltammetry(LSV),electrochemical impedance analysis(EIS),and cyclic voltammetry(CV)were used to characterize the synthesized catalysts for testing and analyzing the hydrogen-producing performance.The results showed that the hydrogen evolution performance of MoS_(2)/CuS-20%(nMo∶nCu=5∶1)was better than that of platinum(Pt)mesh,and the hydrogen production rate of MoS_(2)/CuS-20%as a cathode in MEC was(0.2031±0.0237)m^(3)_(H_(2))·m^(-3)·d^(-1) for 72 h at an applied voltage of 0.8 V,which was slightly higher than that of Pt mesh of(0.1886±0.0134)m^(3)_(H_(2))·m^(-3)·d^(-1).The addition of a certain amount of CuS not only regulates the electron transfer ability of MoS_(2) but also increases the density of active sites.展开更多
A coupled system consisting of an upflow membrane-less microbial fuel cell (upflow ML-MFC) and a photobioreactor was developed, and its effectiveness for continuous wastewater treatment and electricity production was ...A coupled system consisting of an upflow membrane-less microbial fuel cell (upflow ML-MFC) and a photobioreactor was developed, and its effectiveness for continuous wastewater treatment and electricity production was evaluated. Wastewater was fed to the upflow ML-MFC to remove chemical oxygen demand (COD), phosphorus and nitrogen with simultaneous electricity generation. The effluent from the cathode compartment of the upflow ML-MFC was then continuously fed to an external photobioreactor for removing the remaining phosphorus and nitrogen using microalgae. Alone, the upflow ML-MFC produces a maximum power density of 481 mW/m 3 , and obtains 77.9% COD, 23.5% total phosphorus (TP) and 97.6% NH4+-N removals. When combined with the photobioreactor, the system achieves 99.3% TP and 99.0% NH4+-N total removal. These results show both the effectiveness and the potential application of the coupled system to continuously treat domestic wastewater and simultaneously generate electricity and biomass.展开更多
Noble metal-free and highly efficient electrocatalytic materials with hierarchically porous structures continue to be studied for the oxygen reduction reaction(ORR) in microbial fuel cells(MFCs). We report bimetal-org...Noble metal-free and highly efficient electrocatalytic materials with hierarchically porous structures continue to be studied for the oxygen reduction reaction(ORR) in microbial fuel cells(MFCs). We report bimetal-organic framework(bi-MOF)-derived nanocubic Swiss cheese-like carbons with a novel three-dimensional hierarchically porous structure(3D Co-N-C) prepared by utilizing cetyltrimethylammonium bromide(CTAB) as a structure-directing agent to control the formation of a nanocubic skeleton, and silica spheres as a template to form a mesoporous structure. The elemental composition and chemical morphology of this material can be tuned through the Zn/Co ratio to optimize its ORR catalytic activity. The optimized 3D Co-N-C displays excellent ORR catalytic performance(half-wave potential as high as 0.754 V vs. reversible hydrogen electrode and diffusion-limiting current density of 5.576 mA cm^(-2)) in 0.01 mol L^(-1) phosphate-buffered saline(PBS electrolyte),showing it can compete with the commercial 20 wt% Pt/C catalysts. The catalytic capability and long-term durability of 3D Co-N-C as an air-filled cathode electrocatalyst in an MFC device are tested, showing that the 3D CoNC-MFC can reach a high power density of 1257 mW m^(-2) and provide a competitive voltage during a periodic feeding operation for 192 h;these values are much higher than those of the Pt/C-MFC.展开更多
The preparation of high-value fuels and chemicals through the electrochemical carbon dioxide reduction reaction(CDRR)is of great significance to the virtuous cycle of carbon dioxide.However,due to the high overpotenti...The preparation of high-value fuels and chemicals through the electrochemical carbon dioxide reduction reaction(CDRR)is of great significance to the virtuous cycle of carbon dioxide.However,due to the high overpotential involved in this reaction,high power consumption and high-cost noble-metal-based catalysts are required for driving this process.Herein,the electrochemical CDRR was achieved on biocompatible metal-free nitrogen,phosphorus co-doped carbon-based materials(NP-C)in the microbial fuel cell-microbial electrolysis cell(MFC-MEC)coupling system.As the bioelectrochemistry in MFC supplied power to drive the electrocatalysis in MEC,syngas was spontaneously produced from this coupling system without external energy input.With the NP-C materials as the excellent bifunctional electrocatalyst for the CDRR and oxygen reduction reaction(ORR),the current density of the MEC reached−0.52 mA cm^−2,and the Faradaic efficiencies(FEs)of CO and H2 were 60%and 40%,respectively,at a load resistance of 10Ω.Moreover,the CO/H2 product ratio can be changed by adjusting the load resistance,which will widely meet various demand of syngas usage in further reactions.This study provides a spontaneous and tunable production of syngas in biogas digesters via a electrochemical strategy.展开更多
文摘MoS_(2)/CuS composite catalysts were successfully synthesized using a one-step hydrothermal method with sodium molybdate dihydrate,thiourea,oxalic acid,and copper nitrate trihydrate as raw materials.The hydrogen pro-duction performance of MoS_(2)/CuS prepared with different molar ratios of Mo to Cu precursors(n_(Mo)∶n_(Cu))as cathodic catalysts was investigated in the two-chamber microbial electrolytic cell(MEC).X-ray diffraction(XRD),X-ray pho-toelectron spectroscopy(XPS),scanning electron microscopy(SEM),transmission electron microscope(TEM),linear scanning voltammetry(LSV),electrochemical impedance analysis(EIS),and cyclic voltammetry(CV)were used to characterize the synthesized catalysts for testing and analyzing the hydrogen-producing performance.The results showed that the hydrogen evolution performance of MoS_(2)/CuS-20%(nMo∶nCu=5∶1)was better than that of platinum(Pt)mesh,and the hydrogen production rate of MoS_(2)/CuS-20%as a cathode in MEC was(0.2031±0.0237)m^(3)_(H_(2))·m^(-3)·d^(-1) for 72 h at an applied voltage of 0.8 V,which was slightly higher than that of Pt mesh of(0.1886±0.0134)m^(3)_(H_(2))·m^(-3)·d^(-1).The addition of a certain amount of CuS not only regulates the electron transfer ability of MoS_(2) but also increases the density of active sites.
基金Projects(2009GG10005004, 2010GHY10504) supported by the Scientific and Technological Foundation of Shandong Province,ChinaProject(2011GHY11531) supported by the Science and Technology Development Program of Shandong Province,ChinaProject(ZR2009BM015) supported by the Natural Science Foundation of Shandong Province,China
文摘A coupled system consisting of an upflow membrane-less microbial fuel cell (upflow ML-MFC) and a photobioreactor was developed, and its effectiveness for continuous wastewater treatment and electricity production was evaluated. Wastewater was fed to the upflow ML-MFC to remove chemical oxygen demand (COD), phosphorus and nitrogen with simultaneous electricity generation. The effluent from the cathode compartment of the upflow ML-MFC was then continuously fed to an external photobioreactor for removing the remaining phosphorus and nitrogen using microalgae. Alone, the upflow ML-MFC produces a maximum power density of 481 mW/m 3 , and obtains 77.9% COD, 23.5% total phosphorus (TP) and 97.6% NH4+-N removals. When combined with the photobioreactor, the system achieves 99.3% TP and 99.0% NH4+-N total removal. These results show both the effectiveness and the potential application of the coupled system to continuously treat domestic wastewater and simultaneously generate electricity and biomass.
基金supported by the National Natural Science Foundation of China (51976143)the National Key Research and Development Program of China (2018YFA0702001)Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory (XHD2020-002)。
文摘Noble metal-free and highly efficient electrocatalytic materials with hierarchically porous structures continue to be studied for the oxygen reduction reaction(ORR) in microbial fuel cells(MFCs). We report bimetal-organic framework(bi-MOF)-derived nanocubic Swiss cheese-like carbons with a novel three-dimensional hierarchically porous structure(3D Co-N-C) prepared by utilizing cetyltrimethylammonium bromide(CTAB) as a structure-directing agent to control the formation of a nanocubic skeleton, and silica spheres as a template to form a mesoporous structure. The elemental composition and chemical morphology of this material can be tuned through the Zn/Co ratio to optimize its ORR catalytic activity. The optimized 3D Co-N-C displays excellent ORR catalytic performance(half-wave potential as high as 0.754 V vs. reversible hydrogen electrode and diffusion-limiting current density of 5.576 mA cm^(-2)) in 0.01 mol L^(-1) phosphate-buffered saline(PBS electrolyte),showing it can compete with the commercial 20 wt% Pt/C catalysts. The catalytic capability and long-term durability of 3D Co-N-C as an air-filled cathode electrocatalyst in an MFC device are tested, showing that the 3D CoNC-MFC can reach a high power density of 1257 mW m^(-2) and provide a competitive voltage during a periodic feeding operation for 192 h;these values are much higher than those of the Pt/C-MFC.
基金the National Natural Science Foundation of China(21872147 and 21805277)the Natural Science Foundation of Fujian Province(2018J05030 and 2019J05152)+2 种基金the Key Research Program of Frontier Sciences,CAS(ZDBS-LYSLH028)DNL Cooperation Fund,CAS(DNL201924)the Strategic Priority Research Program,CAS(XDB20000000)。
文摘The preparation of high-value fuels and chemicals through the electrochemical carbon dioxide reduction reaction(CDRR)is of great significance to the virtuous cycle of carbon dioxide.However,due to the high overpotential involved in this reaction,high power consumption and high-cost noble-metal-based catalysts are required for driving this process.Herein,the electrochemical CDRR was achieved on biocompatible metal-free nitrogen,phosphorus co-doped carbon-based materials(NP-C)in the microbial fuel cell-microbial electrolysis cell(MFC-MEC)coupling system.As the bioelectrochemistry in MFC supplied power to drive the electrocatalysis in MEC,syngas was spontaneously produced from this coupling system without external energy input.With the NP-C materials as the excellent bifunctional electrocatalyst for the CDRR and oxygen reduction reaction(ORR),the current density of the MEC reached−0.52 mA cm^−2,and the Faradaic efficiencies(FEs)of CO and H2 were 60%and 40%,respectively,at a load resistance of 10Ω.Moreover,the CO/H2 product ratio can be changed by adjusting the load resistance,which will widely meet various demand of syngas usage in further reactions.This study provides a spontaneous and tunable production of syngas in biogas digesters via a electrochemical strategy.