The fretting wear behavior of 0Cr20Ni32AlTi alloy was investigated with crossed cylinder contact under 80 N at 300 and 400 °C.Wear scar and debris were analyzed systematically by scanning electron microscopy and ...The fretting wear behavior of 0Cr20Ni32AlTi alloy was investigated with crossed cylinder contact under 80 N at 300 and 400 °C.Wear scar and debris were analyzed systematically by scanning electron microscopy and X-ray photoelectron spectroscopy.The results show that the friction logs are mixed fretting regime and gross slip regime with the magnitudes of displacement of 10 and 20 μm,respectively.Severe wear and friction oxidation occur on the material surface.A large number of granular debris produced in the fretting process can be easily congregated and adhered at the contact zone after repeated crushes.The resultant of friction oxidation is mainly composed of Fe3O4,Fe2O3,Cr2O3 and NiO.Temperature and friction are the major factors affecting the oxidation reaction rate.The fretting friction effect can enhance the oxidation reaction activity of surface atoms of 0Cr20Ni32AlTi alloy and reduce the oxidation activation energy.As result,the oxidation reaction rate is accelerated.展开更多
Grinding hardening is a new technology of hardening steel piece surfaces with grinding heat generated in the grinding process instead of with a high or medium frequency induction heating method,which can effectively i...Grinding hardening is a new technology of hardening steel piece surfaces with grinding heat generated in the grinding process instead of with a high or medium frequency induction heating method,which can effectively integrate grinding and surface hardening. Experimental studies were carried out on grinding hardening of non-quenched and tempered steel. Through grinding experiments with variable depths of cut and feeding rate,the variation in the depth of the hardening layer was studied and the microstructure of the hardening zone of the test pieces was subsequently ana-lyzed. In the end,the hardening effect of non-quenched and tempered steel was compared with that of 40Cr steel,which revealed the superiority of non-quenched and tempered steel in grinding hardening technology.展开更多
In this study, the flow characteristics and behaviors of virgin and recycled Inconel powder for powder-bed additive manufacturing (AM) were studied using different powder characterization techniques. The results rev...In this study, the flow characteristics and behaviors of virgin and recycled Inconel powder for powder-bed additive manufacturing (AM) were studied using different powder characterization techniques. The results revealed that the particle size distribution (PSD) for the selective laser melting (SLM) process is typically in the range from 15 μm to 63 μm. The flow rate of virgin Inconel powder is around 28 s·(50 g)^-1. In addition, the packing density was found to be 60%. The rheological test results indicate that the virgin powder has reasonably good flowability compared with the recycled powder. The inter-relation between the powder characteristics is discussed herein. A propeller was successfully printed using the powder. The results suggest that Inconel powder is suitable for AM and can be a good reference for researchers who attempt to pro- duce AM powders.展开更多
Nanocrystalline Fe-doped TiO2 with size of 6070 nm was prepared by a sol-gel technique, followed by freeze-drying treatment for 2 h. Thermogravimetric and differential thermal analyses, X-ray diffraction, scanning (e...Nanocrystalline Fe-doped TiO2 with size of 6070 nm was prepared by a sol-gel technique, followed by freeze-drying treatment for 2 h. Thermogravimetric and differential thermal analyses, X-ray diffraction, scanning (electron) microscope, laser diffraction particle size analyzer and UV-Vis spectrophotometer technologies were used to characterize the product. The photocatalytic activities of the samples were evaluated by the degradation of wastewater of paper-making. The effects of Fe ion implantation on the photocatalytic activity of TiO2 were also discussed. The results show that the iron content plays an essential role in affecting the photocatalytic activity of the Fe-doped TiO2 and the optimum content of Fe-doped is 0.05% (mass fraction). The photocatalytic activity of samples with lower content of Fe-doped is higher than that of pure TiO2 in the treatment of paper-making wastewater. The photo-degradation effect of paper-making effluent is the best by means of Fe-doped TiO2 with 0.05% Fe.展开更多
In this paper, we report a ferromagnetic resonance study on the permalloy film of submicron sized rectangular arrays prepared by electron beam lithography and the theoretical simulation to the non uniform demagnetiz...In this paper, we report a ferromagnetic resonance study on the permalloy film of submicron sized rectangular arrays prepared by electron beam lithography and the theoretical simulation to the non uniform demagnetizing effect and ferromagnetic resonance data. By theoretical simulation, the magnetization, gyromagnetic ratio and g value of the sample are determined. The theoretical curves of the dependence of the resonance field on the field orientation φ H fit well with the experimental data. When the steady magnetic field is applied near the film normal, a series of additional regular peaks (up to eight ) appeared in the FMR spectrum on the low field side of the main FMR peak. The resonance field of these side peaks decreases linearly with the peak number. The possible physical mechanism of these multiple peaks was discussed.展开更多
This paper presents the effect of Fe on the microstructure and mechanical properties of Al-9Mg-2.6Si alloy.The Feaddition in the Al-9Mg-2.6Si alloy can slightly increase the yield strength but decrease the elongation....This paper presents the effect of Fe on the microstructure and mechanical properties of Al-9Mg-2.6Si alloy.The Feaddition in the Al-9Mg-2.6Si alloy can slightly increase the yield strength but decrease the elongation.With a much higher Feaddition around1.6wt.%,the elongation of the alloy can still maintain a usable level of5%.This alloy has shown a high toleranceon the Fe contamination展开更多
The Mg-based hydrogen storage alloys Mg2Ni, Mg2Ni0.7Fe0.3 and Mgl.7Alo.3Ni were successfully synthesized by a two-step process (sintering and ball milling). The crystal structure and microstructure were examined by ...The Mg-based hydrogen storage alloys Mg2Ni, Mg2Ni0.7Fe0.3 and Mgl.7Alo.3Ni were successfully synthesized by a two-step process (sintering and ball milling). The crystal structure and microstructure were examined by X-ray diffraction, Scanning Electron Microscope and Malvern particle size analyzer. New phase appears in the tripe alloys doped with A1 and Fe, and the particle size ranges from 3μm to 5 μm. The electrochemical performance studies indicate that the partial substitution of AI for Mg, and Fe for Ni significantly improve the cycle life, reversibility of hydrogen absorption and desorption. The diffusion process is the control step in the electrode reaction of hydrogen storage alloys.展开更多
A 9% Cr ferritic steel weld metal containing 1% Co, partially substituted for nickel, was prepared by submerged arc welding (SAW) processing. The microstructure and creep properties of the weld metal were investigated...A 9% Cr ferritic steel weld metal containing 1% Co, partially substituted for nickel, was prepared by submerged arc welding (SAW) processing. The microstructure and creep properties of the weld metal were investigated. The microstructure exhibited a fully tempered martensitic structure free of δ-ferrite. The creep properties of the obtained weld metal were inferior to those of the P92 base metal at 600 and 650 °C. The values of A and n for weld metal in the Norton power law constitution at 650 °C are 1.1×10?21 and 8.1, respectively.展开更多
基金Project (51075342) supported by the National Natural Science Foundation of ChinaProject (2007CB714704) supported by the National Basic Research Program of China
文摘The fretting wear behavior of 0Cr20Ni32AlTi alloy was investigated with crossed cylinder contact under 80 N at 300 and 400 °C.Wear scar and debris were analyzed systematically by scanning electron microscopy and X-ray photoelectron spectroscopy.The results show that the friction logs are mixed fretting regime and gross slip regime with the magnitudes of displacement of 10 and 20 μm,respectively.Severe wear and friction oxidation occur on the material surface.A large number of granular debris produced in the fretting process can be easily congregated and adhered at the contact zone after repeated crushes.The resultant of friction oxidation is mainly composed of Fe3O4,Fe2O3,Cr2O3 and NiO.Temperature and friction are the major factors affecting the oxidation reaction rate.The fretting friction effect can enhance the oxidation reaction activity of surface atoms of 0Cr20Ni32AlTi alloy and reduce the oxidation activation energy.As result,the oxidation reaction rate is accelerated.
基金Projects JH03-001 supported by the High and New Technology Foundation of Jiangsu High School2006B009 by the Science Foundation of China University ofMining & Technology
文摘Grinding hardening is a new technology of hardening steel piece surfaces with grinding heat generated in the grinding process instead of with a high or medium frequency induction heating method,which can effectively integrate grinding and surface hardening. Experimental studies were carried out on grinding hardening of non-quenched and tempered steel. Through grinding experiments with variable depths of cut and feeding rate,the variation in the depth of the hardening layer was studied and the microstructure of the hardening zone of the test pieces was subsequently ana-lyzed. In the end,the hardening effect of non-quenched and tempered steel was compared with that of 40Cr steel,which revealed the superiority of non-quenched and tempered steel in grinding hardening technology.
基金financial support provided by A*STAR Additive Manufacturing Centre (AMC) Initiative: Work package 1-High temperature materials development for 3D additive manufacturing (142680088)
文摘In this study, the flow characteristics and behaviors of virgin and recycled Inconel powder for powder-bed additive manufacturing (AM) were studied using different powder characterization techniques. The results revealed that the particle size distribution (PSD) for the selective laser melting (SLM) process is typically in the range from 15 μm to 63 μm. The flow rate of virgin Inconel powder is around 28 s·(50 g)^-1. In addition, the packing density was found to be 60%. The rheological test results indicate that the virgin powder has reasonably good flowability compared with the recycled powder. The inter-relation between the powder characteristics is discussed herein. A propeller was successfully printed using the powder. The results suggest that Inconel powder is suitable for AM and can be a good reference for researchers who attempt to pro- duce AM powders.
文摘Nanocrystalline Fe-doped TiO2 with size of 6070 nm was prepared by a sol-gel technique, followed by freeze-drying treatment for 2 h. Thermogravimetric and differential thermal analyses, X-ray diffraction, scanning (electron) microscope, laser diffraction particle size analyzer and UV-Vis spectrophotometer technologies were used to characterize the product. The photocatalytic activities of the samples were evaluated by the degradation of wastewater of paper-making. The effects of Fe ion implantation on the photocatalytic activity of TiO2 were also discussed. The results show that the iron content plays an essential role in affecting the photocatalytic activity of the Fe-doped TiO2 and the optimum content of Fe-doped is 0.05% (mass fraction). The photocatalytic activity of samples with lower content of Fe-doped is higher than that of pure TiO2 in the treatment of paper-making wastewater. The photo-degradation effect of paper-making effluent is the best by means of Fe-doped TiO2 with 0.05% Fe.
文摘In this paper, we report a ferromagnetic resonance study on the permalloy film of submicron sized rectangular arrays prepared by electron beam lithography and the theoretical simulation to the non uniform demagnetizing effect and ferromagnetic resonance data. By theoretical simulation, the magnetization, gyromagnetic ratio and g value of the sample are determined. The theoretical curves of the dependence of the resonance field on the field orientation φ H fit well with the experimental data. When the steady magnetic field is applied near the film normal, a series of additional regular peaks (up to eight ) appeared in the FMR spectrum on the low field side of the main FMR peak. The resonance field of these side peaks decreases linearly with the peak number. The possible physical mechanism of these multiple peaks was discussed.
文摘This paper presents the effect of Fe on the microstructure and mechanical properties of Al-9Mg-2.6Si alloy.The Feaddition in the Al-9Mg-2.6Si alloy can slightly increase the yield strength but decrease the elongation.With a much higher Feaddition around1.6wt.%,the elongation of the alloy can still maintain a usable level of5%.This alloy has shown a high toleranceon the Fe contamination
基金Funded by the National High Technology Research and Development Program of China (Key Project) (2001AA 331050) and the Chongqing Applied Fundamental Research (7941-2).
文摘The Mg-based hydrogen storage alloys Mg2Ni, Mg2Ni0.7Fe0.3 and Mgl.7Alo.3Ni were successfully synthesized by a two-step process (sintering and ball milling). The crystal structure and microstructure were examined by X-ray diffraction, Scanning Electron Microscope and Malvern particle size analyzer. New phase appears in the tripe alloys doped with A1 and Fe, and the particle size ranges from 3μm to 5 μm. The electrochemical performance studies indicate that the partial substitution of AI for Mg, and Fe for Ni significantly improve the cycle life, reversibility of hydrogen absorption and desorption. The diffusion process is the control step in the electrode reaction of hydrogen storage alloys.
基金Project (No 51074113) supported by the National Natural ScienceFoundation of China
文摘A 9% Cr ferritic steel weld metal containing 1% Co, partially substituted for nickel, was prepared by submerged arc welding (SAW) processing. The microstructure and creep properties of the weld metal were investigated. The microstructure exhibited a fully tempered martensitic structure free of δ-ferrite. The creep properties of the obtained weld metal were inferior to those of the P92 base metal at 600 and 650 °C. The values of A and n for weld metal in the Norton power law constitution at 650 °C are 1.1×10?21 and 8.1, respectively.