借助于电化学沉积的方法,在氧化铝纳米孔内生长Bi2Te3材料,从而形成温差电纳米线阵列.利用SEM, XRD and TEM分析手段对制备的纳米线形貌和结构进行了分析,测量了纳米线的组成和温差电性能.p型和n型 Bi2Te3纳米线材料的Seebeck系数经...借助于电化学沉积的方法,在氧化铝纳米孔内生长Bi2Te3材料,从而形成温差电纳米线阵列.利用SEM, XRD and TEM分析手段对制备的纳米线形貌和结构进行了分析,测量了纳米线的组成和温差电性能.p型和n型 Bi2Te3纳米线材料的Seebeck系数经过测量分别为260μv/K和-188μV/K(307 K),比同类的块状温差电材料性能高.同时研究了沉积电位对氧化铝模板中纳米孔的填充率的影响,并对纳米线阵列的电阻进行了测量.尝试了利用n型和p型Bi2Te3纳米线阵列制备一种新型的微型温差发电器.展开更多
Most of the MHP (micro hydro power) plants use ELC (electronic load controller) for speed control. Various types of ELC have been developed so far. A dummy ballast load is connected across each phase of generator ...Most of the MHP (micro hydro power) plants use ELC (electronic load controller) for speed control. Various types of ELC have been developed so far. A dummy ballast load is connected across each phase of generator terminals and ELC controls the power consumed by the ballast load to result in constant speed operation. The ELC developed so far uses thyristor switches in each phase to control ballast load power. The ELC senses the system frequency and comparing it with reference frequency, it generates a common value of firing angle for all three thyristor pairs of each phase. The performance of such ELC is not perfect for unbalanced consumers load connected in each phase, which overloads the generator. This paper presents an advanced type of ELC which senses frequency as well as consumer's load current of each phase and fires the thyristor pairs with different value of firing angles for different phases. This solves the problem of overloading of the generator with unbalanced consumer's load. Simutink model is developed to perform transient analysis of the proposed scheme and the prototype of hardware is also fabricated. The simulation results and experimental results are presented.展开更多
文摘Most of the MHP (micro hydro power) plants use ELC (electronic load controller) for speed control. Various types of ELC have been developed so far. A dummy ballast load is connected across each phase of generator terminals and ELC controls the power consumed by the ballast load to result in constant speed operation. The ELC developed so far uses thyristor switches in each phase to control ballast load power. The ELC senses the system frequency and comparing it with reference frequency, it generates a common value of firing angle for all three thyristor pairs of each phase. The performance of such ELC is not perfect for unbalanced consumers load connected in each phase, which overloads the generator. This paper presents an advanced type of ELC which senses frequency as well as consumer's load current of each phase and fires the thyristor pairs with different value of firing angles for different phases. This solves the problem of overloading of the generator with unbalanced consumer's load. Simutink model is developed to perform transient analysis of the proposed scheme and the prototype of hardware is also fabricated. The simulation results and experimental results are presented.