Three typical rural-suburban-urban artificial wetlands Pinus elliottii forest in Nanchang City were selected as research objects to mensurate the soil nutrient content.And the annual average values and seasonal change...Three typical rural-suburban-urban artificial wetlands Pinus elliottii forest in Nanchang City were selected as research objects to mensurate the soil nutrient content.And the annual average values and seasonal changes of microbes in forest soil were analyzed.The results showed that soil bulk density,total phosphorus (TP) and pH increased,while soil organic carbon (SOC),total nitrogen (TN) declined with rural-to-urban gradient.At different eco-boundary,annual average values showed that actinomycetes quantity bacteria quantity fungi quantity.Total microbe number was urban suburb rural areas.The number of bacteria and fungi was urban suburbs rural areas,but the number of actinomycetes was suburb urban rural areas.Eco-boundary,season and microbes actinomycetes and fungi reached an extreme significant level (P 0.001).Bacteria in soil at different eco-boundary had significant effects,but season had no significant effect on bacteria.Eco-boundary and season had a very significant interaction on actinomycetes and fungi (P 0.001),but they had no significant interaction on bacteria (P 0.05).Eco-boundary showed significantly positive correlation with actinomycetes and fungi (P 0.001),but season had no significant corelation with microbes.In conclusion,urbanization process caused the physical-chemical properties changes of forest soil and affected the amount of soil microbes obviously.展开更多
Urbanization of China is substantial and growing, and water resources are crucial for both economic and social sustainable development. Unfortunately, the frequency and intensity of water contamination events are incr...Urbanization of China is substantial and growing, and water resources are crucial for both economic and social sustainable development. Unfortunately, the frequency and intensity of water contamination events are increasing at an unprecedented rate and often accompanied by increased pollutant loading due to human activities such as irreversible industrialization and urbanization. The impacts of human pollution are most evident and of greatest concern at the microbial level. The research of the Aquatic Ecohealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, has been focusing mainly on aquatic microorganisms in the urban environment, from drinking water and landscape water to waste water. Its projects fall into three categories: biomonitoring and bioassessment, microbial ecology and diversity, ecotoxicology and environmental microbiology. Its scientif ic topics include the aquatic ecological safety and microbial food web.展开更多
基金Supported by Natural Science Foundation of Jiangxi Province(2007GQN1935)~~
文摘Three typical rural-suburban-urban artificial wetlands Pinus elliottii forest in Nanchang City were selected as research objects to mensurate the soil nutrient content.And the annual average values and seasonal changes of microbes in forest soil were analyzed.The results showed that soil bulk density,total phosphorus (TP) and pH increased,while soil organic carbon (SOC),total nitrogen (TN) declined with rural-to-urban gradient.At different eco-boundary,annual average values showed that actinomycetes quantity bacteria quantity fungi quantity.Total microbe number was urban suburb rural areas.The number of bacteria and fungi was urban suburbs rural areas,but the number of actinomycetes was suburb urban rural areas.Eco-boundary,season and microbes actinomycetes and fungi reached an extreme significant level (P 0.001).Bacteria in soil at different eco-boundary had significant effects,but season had no significant effect on bacteria.Eco-boundary and season had a very significant interaction on actinomycetes and fungi (P 0.001),but they had no significant interaction on bacteria (P 0.05).Eco-boundary showed significantly positive correlation with actinomycetes and fungi (P 0.001),but season had no significant corelation with microbes.In conclusion,urbanization process caused the physical-chemical properties changes of forest soil and affected the amount of soil microbes obviously.
文摘Urbanization of China is substantial and growing, and water resources are crucial for both economic and social sustainable development. Unfortunately, the frequency and intensity of water contamination events are increasing at an unprecedented rate and often accompanied by increased pollutant loading due to human activities such as irreversible industrialization and urbanization. The impacts of human pollution are most evident and of greatest concern at the microbial level. The research of the Aquatic Ecohealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, has been focusing mainly on aquatic microorganisms in the urban environment, from drinking water and landscape water to waste water. Its projects fall into three categories: biomonitoring and bioassessment, microbial ecology and diversity, ecotoxicology and environmental microbiology. Its scientif ic topics include the aquatic ecological safety and microbial food web.