A composite ceramic coating containing Y2O3-ZrO2-MgO(YSZ-MgO) was prepared on AZ91D magnesium alloy,which was immersed in Y(NO3)3 aqueous solution as pretreatment,by micro-arc oxidation(MAO) process.The morpholo...A composite ceramic coating containing Y2O3-ZrO2-MgO(YSZ-MgO) was prepared on AZ91D magnesium alloy,which was immersed in Y(NO3)3 aqueous solution as pretreatment,by micro-arc oxidation(MAO) process.The morphology,elemental and phase compositions,corrosion behavior and thermal stability of the coatings were studied by SEM,EDX,XRD,electrochemical corrosion test,high temperature oxidation and thermal shock test.The results show that the coating mainly consists of ZrO2,Y2O3,MgO,Mg2SiO4,and MgF2.Among these compounds,Y2O3 accounts for 26.7% of(Y2O3 + ZrO2).The thickness of YSZ-MgO coating is smaller than that of ZrO2-MgO coating,but its compactness and surface roughness are better than those of ZrO2-MgO coating.YSZ-MgO coating has a good corrosion resistance,and its corrosion rate in 5% NaCl aqueous solution is lower than that of ZrO2-MgO and only about 8.5% of that of AZ91D magnesium alloy.After oxidation at 410 °C,the mass gain of AZ91D magnesium alloy presents a linear increase with the oxidation time.The YSZ-MgO coating and ZrO2-MgO coating can remarkably decrease the oxidation mass gain.The oxidation mass gain of YSZ-MgO coating is lower than that of ZrO2-MgO coating,especially during a long oxidation period.The thermal shock resistance of YSZ-MgO coating is superior to ZrO2-MgO coating.展开更多
The hollow α-MnO2 nanoneedle-based microspheres coated with Pd nanoparticles were reported as a novel catalyst for rechargeable lithium-air batteries. The hollow microspheres are composed ofα-MnO2 nanoneedles. Pd na...The hollow α-MnO2 nanoneedle-based microspheres coated with Pd nanoparticles were reported as a novel catalyst for rechargeable lithium-air batteries. The hollow microspheres are composed ofα-MnO2 nanoneedles. Pd nanoparticles are deposited on the hollow microspheres through an aqueous-solution reduction of PdCl2 with NaBH4 at room temperature. The results of TEM, XRD, and EDS show that the Pd nanoparticles are coated on the surface ofα-MnO2 nanoneedles uniformly and the mass fraction of Pd in the Pd-coated α-MnO2 catalyst is about 8.88%. Compared with the counterpart of the hollow α-MnO2 catalyst, the hollow Pd-coated α-MnO2 catalyst improves the energy conversion efficiency and the charge-discharge cycling performance of the air electrode. The initial specific discharge capacity of an air electrode composed of Super P carbon and the as-prepared Pd-coatedα-MnO2 catalyst is 1220 mA·h/g (based on the total electrode mass) at a current density of 0.1 mA/cm2, and the capacity retention rate is about 47.3% after 13 charge-discharge cycles. The results of charge-discharge cycling tests demonstrate that this novel Pd-coatedα-MnO2 catalyst with a hierarchical core-shell structure is a promising catalyst for the lithium-air battery.展开更多
Multilayered Ti-Al based intermetallic sheets were fabricated by sintering alternately layered titanium and aluminum foils.The microstructure and phase formation of the obtained sheets under different sintering condit...Multilayered Ti-Al based intermetallic sheets were fabricated by sintering alternately layered titanium and aluminum foils.The microstructure and phase formation of the obtained sheets under different sintering conditions were evaluated by various techniques.The results reveal that when the sintering temperature is above the melting point of aluminum,the self-propagating high-temperature synthesis reaction occurs between Ti and Al,and forms various phases of Ti-based solid solutions including α-Ti Ti3Al,TiAl,TiAl2 and α-Ti including TiAl3,etc.When the sintering time increased,Ti-based solid solution,TiAl2 and TiAl3 disappeared gradually,and the sheet containing Ti3Al and TiAl phases in a multilayered structure formed finally.A lot of voids were also observed in the sintered structures,which were caused by the melting Al,Kirkendall effect and the difference of molar volumes between reactants and products.The voids were eliminated and a dense sample was obtained by the following hot press.展开更多
This research adopted four methods to toughen epoxy adhesives. They were liquid hydroxyl group terminated polybutadiene (HTPB) rubber modification, silicon rubber modification, polyacrylate multiplicity elastomer par...This research adopted four methods to toughen epoxy adhesives. They were liquid hydroxyl group terminated polybutadiene (HTPB) rubber modification, silicon rubber modification, polyacrylate multiplicity elastomer particulates emulsion modification and chemical grafting modification. After modification, the shearing strength and the rupture elongation were tested. The interface and the chemical reaction between the modifiers and the epoxy were analyzed by scanning electron microscope (SEM) and infrared optical spectrum. The results show that the elastomer particulates modification and the chemical grafting modification can reach the better toughening effects.展开更多
In situ TiB2/7055 composites were successfully synthesized via magnetic chemical direct melt reaction from 7055 (Al-3B)?Ti system. The phase composition and the microstructure of the composites were investigated by...In situ TiB2/7055 composites were successfully synthesized via magnetic chemical direct melt reaction from 7055 (Al-3B)?Ti system. The phase composition and the microstructure of the composites were investigated by XRD, OM and SEM technologies, and the mechanical and wear properties were tested. The results indicate that with the pulsed magnetic field assistance, the morphologies of in situ TiB2 particles are mainly hexagonal-shape or nearly spherical, the sizes are less than 1 μm, and the distribution of the matrix is uniform. Compared the microstructures of the 7055 aluminum matrix composites synthesized without pulsed magnetic field, the average size ofα(Al) phase with pulsed magnetic field assistance is decreased from 20 to 10μm, the array of the second phase is changed from continuous net-shape to discontinuous shape. With the pulsed magnetic field, the tensile strengths of the composites are enhanced from 310 to 330 MPa, and the elongations are increased from 7.5%to 8.0%. In addition, compared with matrix alloy, the wear mass loss of the composites is decreased from 111 to 78 mg under a load of 100 N for 120 min.展开更多
An attempt was made to modify the surface of in-situ aluminium matrix composite (AMC) by micro-arc oxidation (MAO). In the microstructure of AMC, CuAl2 reinforcements were generated by introducing 15% CuO into the...An attempt was made to modify the surface of in-situ aluminium matrix composite (AMC) by micro-arc oxidation (MAO). In the microstructure of AMC, CuAl2 reinforcements were generated by introducing 15% CuO into the aluminium melt. AMC was hot forged, homogenised, quenched and artificially aged before the MAO in a KOH, KF and Na2SiO3-containing electrolyte. After the MAO process the surface of the AMC was covered with Al2O3 coating having an effective thickness of about 15μm. Appearance of crack and/or delamination free zones at the periphery of the indent after the Rockwell C adhesion test indicated good adhesion between the composite and the Al2O3 coating. During dry sliding wear tests, this adherent Al2O3coating resisted the destructive action of the Al2O3 ball and provided about 15 times enhancement in wear resistance as compared to the original state.展开更多
CaMg(CO3)2microspheres were prepared and used as hard templates to fabricate a series of CaMg(CO3)2@Ag2CO3composite microspheres via a fast and low‐cost ion exchange process.The effects of ion exchange time and tempe...CaMg(CO3)2microspheres were prepared and used as hard templates to fabricate a series of CaMg(CO3)2@Ag2CO3composite microspheres via a fast and low‐cost ion exchange process.The effects of ion exchange time and temperature on the physicochemical properties and photocatalytic activities of the composite microspheres were studied through photocatalytic degradation of Acid Orange II under xenon lamp irradiation.The obtained samples were analyzed by X‐ray diffraction,scanning electron microscopy,Fourier transform infrared spectroscopy,UV‐vis diffuse reflectance spectroscopy,N2physical adsorption,and photocurrent tests.The CaMg(CO3)2@Ag2CO3sample with the highest activity was obtained with an ion exchange time of4h and temperature of40°C.The degradation rate of Acid Orange II by this sample reached83.3%after15min of light irradiation,and the sample also performed well in phenol degradation.The CaMg(CO3)2@Ag2CO3produced under these ion exchange conditions showed a well‐ordered hierarchical morphology with small particle sizes,which was beneficial to light absorption and the transfer of photoelectrons(e-)and holes(h+)to the catalyst surface.Moreover,the separation of photogenerated carriers over the composites was greatly improved relative to bare CaMg(CO3)2.Despite the very low content of Ag2CO3(2.56%),excellent photocatalytic performance was obtained over the CaMg(CO3)2@Ag2CO3microspheres.展开更多
The light weight heat treated B-grade bulletproof steel was developed through composition design and optimization based on multiplex alloying,multiplex micro-alloying design ideas and complex phase structure strengthe...The light weight heat treated B-grade bulletproof steel was developed through composition design and optimization based on multiplex alloying,multiplex micro-alloying design ideas and complex phase structure strengthening theory.The puzzle how to avoid the quenching deformation problem of super high strength thin sheet was solved through heat treatment in a die with a set of cooling system.Such B-grade bulletproof steel plate has fine tempered lath martensite structure.The shooting and certification test results showed that the shoot resistance of B-grade bulletproof steel plate can meet the protection demand of Protection specification for cash carrying vehicles(GA 164—2005).In comparison with B-grade bulletproof steel plate made by one of the companies in Sweden,the weight of the developed B-grade bulletproof steel plate can be decreased by 8 %under the same shoot resistance condition.It will be meaningful for cash truck and anti-hijacking vehicle to realize light weight,energy conservation and emission reduction.展开更多
The microstructure formation and strengthening of an Al-5 wt.%TiO2 composites with additions of 5 wt.%Cu and 2 wt.% stearic acid(as a process control agent, PCA) during mechanical alloying and subsequent thermal expos...The microstructure formation and strengthening of an Al-5 wt.%TiO2 composites with additions of 5 wt.%Cu and 2 wt.% stearic acid(as a process control agent, PCA) during mechanical alloying and subsequent thermal exposure were studied. The powder composites were prepared by high-energy ball milling for up to 10 h. Single line tracks of the powders were laser melted. Optical and scanning electron microscopy, XRD analysis and differential scanning calorimetry were used to study microstructural evolution. The results showed that the Cu addition promotes an effective mechanical alloying of aluminum with Ti O2 from the start of milling, resulting in higher microhardness(up to HV 290), while the PCA, on the contrary, postpones this process. In both cases, the composite granules with uniform distribution of Ti O2 particles were formed. Subsequent heating of mechanically alloyed materials causes the activation of an exothermic reaction of Ti O2 reduction with aluminum, the start temperature of which, in the case of Cu addition,shifts to lower values, that is, the transformation begins in the solid state. Besides, the Cu-added material after laser melting demonstrates a more dispersed and uniform structure which positively affects its microhardness.展开更多
ZnO/ZnGa_2O_4 composite microspheres with heterojunction were successfully synthesized by one-pot hydrothermal method.These samples were characterized by TG/DTA,XRD,TEM,HRTEM,UV-vis DRS,FL and BET techniques.The resul...ZnO/ZnGa_2O_4 composite microspheres with heterojunction were successfully synthesized by one-pot hydrothermal method.These samples were characterized by TG/DTA,XRD,TEM,HRTEM,UV-vis DRS,FL and BET techniques.The results indicated the as-prepared samples showed better degree of crystalline and large specific surface area.The photocatalytic activity was evaluated by degradation of methyl orange with the concentration of 50 mg/L under the irradiation of simulated sunlight.The effects of molar ratio of Zn to Ga and calcination temperature on the photocatalytic activity were investigated in detail.The results showed that the highest photocatalytic degradation efficiency was observed at the molar ratio of Zn to Ga of 1:0.5 in the starting materials and the calcination temperature of 400 °C.The maximum photocatalytic degradation rate of MO was 97.1% within 60 min under the simulated sunlight irradiation,which is greatly higher than that of ZnO and ZnGa_2O_4.展开更多
Silicon carbide particle reinforced aluminum matrix composites(SiCp/Al composites)are widely used in aviation,aerospace and electronic package.However,low machining efficiency,severe tool wear and poor surface quality...Silicon carbide particle reinforced aluminum matrix composites(SiCp/Al composites)are widely used in aviation,aerospace and electronic package.However,low machining efficiency,severe tool wear and poor surface quality are severe during the machining of SiCp/Al composites.Laser-induced oxidation is capable to improve the machinability of SiCp/Al composites.The material response of 55%(volume fraction)SiCp/Al composites induced by a nanosecond pulsed laser is studied.A metamorphic layer which is composed of an oxide layer and sub-layer is produced.The effects of reaction surrounding and laser average power on the microstructure and thickness of the oxide layer and sub-layer are investigated.Experimental results show that:A thicker oxide layer and a sub-layer are formed in an oxygen-rich atmosphere.The oxides are mainly composed of 2Al2O3·SiO2(mullite).A positive correlation between the laser average power and thicknesses of oxide layers and sub-layers is found.A loose oxide layer of 138μm and a sub-layer of 21μm are formed at the laser average power of 6 W,laser scanning pitch of 10μm,and laser scanning speed of 1 mm/s under an oxygen-rich atmosphere.The high efficient machining of Si Cp/Al composites can be realized by laser-induced oxidation.展开更多
Ni?Co3O4 composite coatings were electrodeposited on mild steel surface from a Watts-type bath in the presence of sodium lauryl sulfate(SLS).The dispersed Co3O4 particles in the presence of SLS have a greater tendency...Ni?Co3O4 composite coatings were electrodeposited on mild steel surface from a Watts-type bath in the presence of sodium lauryl sulfate(SLS).The dispersed Co3O4 particles in the presence of SLS have a greater tendency to move towards cathode and get incorporated in the coating.SLS modifies chemical composition,surface morphology and microstructure of the Ni?Co3O4 composite coating.The developed composite coating exhibits higher corrosion resistance and microhardness than the pure nickel coating.The loadings of bath solution with different concentrations of Co3O4 particles in the presence of SLS provide hydrophobic nature to the coating surface,which is much effective in enhancing the corrosion resistance of Ni?Co3O4 composite coating.The agglomeration of Co3O4 particles(>3 g/L)under high bath load condition develops defects and dislocation on the coating surface,which results in lower corrosion resistance of the deposit.The mechanical properties of the hydrophobic coatings were assessed by the linear abrasion test.展开更多
Copper complexing ligands concentration (C C) and conditional stability constant of the sea surface microlayer (SML) and subsurface layer (SSL) samples, collected from Daya Bay of Guangdong Province and Jiaozhou Bay o...Copper complexing ligands concentration (C C) and conditional stability constant of the sea surface microlayer (SML) and subsurface layer (SSL) samples, collected from Daya Bay of Guangdong Province and Jiaozhou Bay of Shandong Province, were determined by anodic stripping voltammetry (ASV) technique. C C of Daya Bay in the SML ranged from 6.19×10-7 to 3.52×10-7 mol/L. C C of Jiaozhou Bay in the SML ranged from 5.30×10-7 to 3.03×10-7 mol/L in August 1998 and from 3.46×10-7 to 1.36×10-7 mol/L in May 2000. The C C concentrations were higher in all surface microlayer samples, compared with corresponding subsurface samples. The average enrichment factors of copper complexation in the SML observed above were 1.58, 1.41 and 1.56, respectively. The enrichment of C C concentration in the microlayer demonstrated that organic ligands had certain buffer action on the toxicity of the enriched trace metals in the same layer. Conditional stability constants of the SML in Jiaozhou Bay were lower than those of the SSL; however, it showed just opposite for Daya Bay. BOD (biological oxygen demand) and COD (chemical oxygen demand) indicated the organic matter content, also showed enriched in the SML. C C had an obvious relationship with BOD or COD.展开更多
The nanosized binary mixed oxides of Zn/Sn had been prepared by the fractional homogeneous precipitation route using urea as the latent precipitant under boiling reflux condition The samples prepared with the differen...The nanosized binary mixed oxides of Zn/Sn had been prepared by the fractional homogeneous precipitation route using urea as the latent precipitant under boiling reflux condition The samples prepared with the different initial concentrations of urea or calcined at different temperatures had been investigated by X-ray diffration (XRD) or transmission electron microscopy (TEM). The calcination temperature had obvious effect on the phase composition and the crystal size of the samples attained, and the precipitant concentration also had obvious effect on the oxide particles size and the production rate of ZnO.展开更多
This study aimed to analyze the mechanical properties of the compound FeCuC when compacted at varying pressures and sintered in two different types of furnaces. Besides the different models of furnace, the working atm...This study aimed to analyze the mechanical properties of the compound FeCuC when compacted at varying pressures and sintered in two different types of furnaces. Besides the different models of furnace, the working atmospheres were varied: one is being composed with argon gas and another constituted with a balancing nitrogen and hydrogen. Atmospheres vary with the amount of production and the type of equipment used. The compound generated is used in the manufacture of rings for mechanical seals and is currently manufactured by the sintering process in passing furnace. The sintering was performed in a static furnace with argon atmosphere and compared with the same compound sintered in passage furnace with hydrogen and nitrogen atmosphere. The analysis of the properties of the tested material was performed with the aid of metallography using a scanning electron microscope, which verified the particle size distribution, chemical elements and pores present. Brinell hardness and Vickers micro hardness tests were also used to analyze the properties of this material after completion of the two processes. Thus, the research carried out has shown that variations may occur in the mechanical properties when processed in different furnace types and different sintering atmospheres.展开更多
The dynamic distribution of phosphorylated Histone H3 on Ser10 (phospho-H3) in cells was investigated to determineits function during mitosis. Human breast adenocarcinoma cells MCF-7, and Chinese hamster cells CHO wer...The dynamic distribution of phosphorylated Histone H3 on Ser10 (phospho-H3) in cells was investigated to determineits function during mitosis. Human breast adenocarcinoma cells MCF-7, and Chinese hamster cells CHO were analyzedby indirect immunofluorescence staining with an antibody against phospho-H3. We found that the phosphorylationbegins at early prophase, and spreads throughout the chromosomes at late prophase. At metaphase, most of the phospho-H3 aggregates at the end of the condensed entity of chromosomes at equatorial plate. During anaphase and telophase,the fluorescent signal of phospho-H3 is detached from chromosomes into cytoplasm. At early anaphase, phospho-H3shows ladder bands between two sets of separated chromosome, and forms “sandwich-like structure” when the chro-mosomes condensed. With the cleavage progressing, the “ladders” of the histone contract into a bigger bright dot. Thenthe histone aggregates and some of compacted microtubules in the midbody region are composed into a “bar-like”complex to separate daughter cells. The daughter cells seal their plasma membrane along with the ends of the “bar”,inside which locates microtubules and modified histones, to finish the cytokinesis and keep the “bar complex” out of thecells. The specific distribution and kinetics of phospho-H3 in cytoplasm suggest that the modified histones may takepart in the formation of midbody and play a crucial role in cytokinesis.展开更多
Aiming at developing novel microwave-transparent ceramics with low dielectric loss, high thermal conductivity and high strength, Si3Na-AIN (30%, mass fraction) composite ceramics with La203 as sintering additive wer...Aiming at developing novel microwave-transparent ceramics with low dielectric loss, high thermal conductivity and high strength, Si3Na-AIN (30%, mass fraction) composite ceramics with La203 as sintering additive were prepared by hot-pressing at 1 800 ℃ and subsequently annealed at 1 450 ℃ and 1 850 ℃ for 2 h and 4 h, respectively. The materials were characterized by XRD and SEM. The effect of annealing process on the phase composition, sintering performance, microstructure, bending strength, dielectric loss and thermal conductivity of the materials was investigated. The results showed that both annealing at 1 850 ℃ and 1 450 ℃ promoted the phase transformation of α-Si3N4 to β-Si3N4. After annealing at 1 850 ℃, grain growth to a certain extent occurred in the materials. Especially, the elongated β-Si3N4 grains showed a slight increase in diameter from 0.2 μm to 0.6 μm approximately and a decrease in aspect ratio. As a result, as the annealing time increased to 4 h, the bending strength declined from 456 MPa to 390 MPa, whereas the dielectric loss decreased to 2.15× 10^-3 and the thermal conductivity increased to 16.3 W/(m.K) gradually. When annealed at 1 450 ℃, increasing the annealing time to 4 h significantly promoted the crystallization of glassy phase to La2Si6N803 phase in the materials, which led to the increase in bending strength to 619 MPa and thermal conductivity to 15.9 W/(m·K), respectively, and simultaneously the decrease in dielectric loss to 1.53× 10^-3.展开更多
基金Project (gf200901002) support by the National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology of Nanchang Hangkong University,China
文摘A composite ceramic coating containing Y2O3-ZrO2-MgO(YSZ-MgO) was prepared on AZ91D magnesium alloy,which was immersed in Y(NO3)3 aqueous solution as pretreatment,by micro-arc oxidation(MAO) process.The morphology,elemental and phase compositions,corrosion behavior and thermal stability of the coatings were studied by SEM,EDX,XRD,electrochemical corrosion test,high temperature oxidation and thermal shock test.The results show that the coating mainly consists of ZrO2,Y2O3,MgO,Mg2SiO4,and MgF2.Among these compounds,Y2O3 accounts for 26.7% of(Y2O3 + ZrO2).The thickness of YSZ-MgO coating is smaller than that of ZrO2-MgO coating,but its compactness and surface roughness are better than those of ZrO2-MgO coating.YSZ-MgO coating has a good corrosion resistance,and its corrosion rate in 5% NaCl aqueous solution is lower than that of ZrO2-MgO and only about 8.5% of that of AZ91D magnesium alloy.After oxidation at 410 °C,the mass gain of AZ91D magnesium alloy presents a linear increase with the oxidation time.The YSZ-MgO coating and ZrO2-MgO coating can remarkably decrease the oxidation mass gain.The oxidation mass gain of YSZ-MgO coating is lower than that of ZrO2-MgO coating,especially during a long oxidation period.The thermal shock resistance of YSZ-MgO coating is superior to ZrO2-MgO coating.
基金Project(20973124)supported by the National Natural Science Foundation of ChinaProject(KLAEMC-OP201101)supported by the Open Project of Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education(Nankai University),China
文摘The hollow α-MnO2 nanoneedle-based microspheres coated with Pd nanoparticles were reported as a novel catalyst for rechargeable lithium-air batteries. The hollow microspheres are composed ofα-MnO2 nanoneedles. Pd nanoparticles are deposited on the hollow microspheres through an aqueous-solution reduction of PdCl2 with NaBH4 at room temperature. The results of TEM, XRD, and EDS show that the Pd nanoparticles are coated on the surface ofα-MnO2 nanoneedles uniformly and the mass fraction of Pd in the Pd-coated α-MnO2 catalyst is about 8.88%. Compared with the counterpart of the hollow α-MnO2 catalyst, the hollow Pd-coated α-MnO2 catalyst improves the energy conversion efficiency and the charge-discharge cycling performance of the air electrode. The initial specific discharge capacity of an air electrode composed of Super P carbon and the as-prepared Pd-coatedα-MnO2 catalyst is 1220 mA·h/g (based on the total electrode mass) at a current density of 0.1 mA/cm2, and the capacity retention rate is about 47.3% after 13 charge-discharge cycles. The results of charge-discharge cycling tests demonstrate that this novel Pd-coatedα-MnO2 catalyst with a hierarchical core-shell structure is a promising catalyst for the lithium-air battery.
基金Project (2010DFA51650) supported by the Ministry of Science and Technology of China
文摘Multilayered Ti-Al based intermetallic sheets were fabricated by sintering alternately layered titanium and aluminum foils.The microstructure and phase formation of the obtained sheets under different sintering conditions were evaluated by various techniques.The results reveal that when the sintering temperature is above the melting point of aluminum,the self-propagating high-temperature synthesis reaction occurs between Ti and Al,and forms various phases of Ti-based solid solutions including α-Ti Ti3Al,TiAl,TiAl2 and α-Ti including TiAl3,etc.When the sintering time increased,Ti-based solid solution,TiAl2 and TiAl3 disappeared gradually,and the sheet containing Ti3Al and TiAl phases in a multilayered structure formed finally.A lot of voids were also observed in the sintered structures,which were caused by the melting Al,Kirkendall effect and the difference of molar volumes between reactants and products.The voids were eliminated and a dense sample was obtained by the following hot press.
文摘This research adopted four methods to toughen epoxy adhesives. They were liquid hydroxyl group terminated polybutadiene (HTPB) rubber modification, silicon rubber modification, polyacrylate multiplicity elastomer particulates emulsion modification and chemical grafting modification. After modification, the shearing strength and the rupture elongation were tested. The interface and the chemical reaction between the modifiers and the epoxy were analyzed by scanning electron microscope (SEM) and infrared optical spectrum. The results show that the elastomer particulates modification and the chemical grafting modification can reach the better toughening effects.
基金Projects(50971066,51174098)supported by the National Natural Science Foundation of ChinaProject(2008-46)supported by Jiangsu Provincial"333"Project of Training the High-level Talents Foundation,China+3 种基金Project(BE2009127)supported by Jiangsu Provincial Science Supporting Item,ChinaProject(2011-11)supported by Jiangsu Provincial College Excellent Science and Technology Innovation Team,ChinaProject(kjsmcx0903)supported by Jiangsu Key Laboratory of Tribology Project,ChinaProject(1201220072)supported by Jiangsu Province Undergraduate Practice-Innovation Training,China
文摘In situ TiB2/7055 composites were successfully synthesized via magnetic chemical direct melt reaction from 7055 (Al-3B)?Ti system. The phase composition and the microstructure of the composites were investigated by XRD, OM and SEM technologies, and the mechanical and wear properties were tested. The results indicate that with the pulsed magnetic field assistance, the morphologies of in situ TiB2 particles are mainly hexagonal-shape or nearly spherical, the sizes are less than 1 μm, and the distribution of the matrix is uniform. Compared the microstructures of the 7055 aluminum matrix composites synthesized without pulsed magnetic field, the average size ofα(Al) phase with pulsed magnetic field assistance is decreased from 20 to 10μm, the array of the second phase is changed from continuous net-shape to discontinuous shape. With the pulsed magnetic field, the tensile strengths of the composites are enhanced from 310 to 330 MPa, and the elongations are increased from 7.5%to 8.0%. In addition, compared with matrix alloy, the wear mass loss of the composites is decreased from 111 to 78 mg under a load of 100 N for 120 min.
文摘An attempt was made to modify the surface of in-situ aluminium matrix composite (AMC) by micro-arc oxidation (MAO). In the microstructure of AMC, CuAl2 reinforcements were generated by introducing 15% CuO into the aluminium melt. AMC was hot forged, homogenised, quenched and artificially aged before the MAO in a KOH, KF and Na2SiO3-containing electrolyte. After the MAO process the surface of the AMC was covered with Al2O3 coating having an effective thickness of about 15μm. Appearance of crack and/or delamination free zones at the periphery of the indent after the Rockwell C adhesion test indicated good adhesion between the composite and the Al2O3 coating. During dry sliding wear tests, this adherent Al2O3coating resisted the destructive action of the Al2O3 ball and provided about 15 times enhancement in wear resistance as compared to the original state.
基金supported by the National Natural Science Foundation of China(21567008,21607064,21707055,21763011)Program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technology+2 种基金Program of 5511 Talents in Scientific Technological Innovation of Jiangxi Province(20165BCB18014)Academic and Technical Leaders of the Main Disciplines in Jiangxi Province(20172BCB22018)Jiangxi Province Natural Science Foundation China(20161BAB203090,20161BAB213083,20171ACB21041)~~
文摘CaMg(CO3)2microspheres were prepared and used as hard templates to fabricate a series of CaMg(CO3)2@Ag2CO3composite microspheres via a fast and low‐cost ion exchange process.The effects of ion exchange time and temperature on the physicochemical properties and photocatalytic activities of the composite microspheres were studied through photocatalytic degradation of Acid Orange II under xenon lamp irradiation.The obtained samples were analyzed by X‐ray diffraction,scanning electron microscopy,Fourier transform infrared spectroscopy,UV‐vis diffuse reflectance spectroscopy,N2physical adsorption,and photocurrent tests.The CaMg(CO3)2@Ag2CO3sample with the highest activity was obtained with an ion exchange time of4h and temperature of40°C.The degradation rate of Acid Orange II by this sample reached83.3%after15min of light irradiation,and the sample also performed well in phenol degradation.The CaMg(CO3)2@Ag2CO3produced under these ion exchange conditions showed a well‐ordered hierarchical morphology with small particle sizes,which was beneficial to light absorption and the transfer of photoelectrons(e-)and holes(h+)to the catalyst surface.Moreover,the separation of photogenerated carriers over the composites was greatly improved relative to bare CaMg(CO3)2.Despite the very low content of Ag2CO3(2.56%),excellent photocatalytic performance was obtained over the CaMg(CO3)2@Ag2CO3microspheres.
文摘The light weight heat treated B-grade bulletproof steel was developed through composition design and optimization based on multiplex alloying,multiplex micro-alloying design ideas and complex phase structure strengthening theory.The puzzle how to avoid the quenching deformation problem of super high strength thin sheet was solved through heat treatment in a die with a set of cooling system.Such B-grade bulletproof steel plate has fine tempered lath martensite structure.The shooting and certification test results showed that the shoot resistance of B-grade bulletproof steel plate can meet the protection demand of Protection specification for cash carrying vehicles(GA 164—2005).In comparison with B-grade bulletproof steel plate made by one of the companies in Sweden,the weight of the developed B-grade bulletproof steel plate can be decreased by 8 %under the same shoot resistance condition.It will be meaningful for cash truck and anti-hijacking vehicle to realize light weight,energy conservation and emission reduction.
基金the Ministry of Education and Science of the Russian Federation in the framework of the State Assignment to the Universities(Project No.11.7172.2017/8.9).
文摘The microstructure formation and strengthening of an Al-5 wt.%TiO2 composites with additions of 5 wt.%Cu and 2 wt.% stearic acid(as a process control agent, PCA) during mechanical alloying and subsequent thermal exposure were studied. The powder composites were prepared by high-energy ball milling for up to 10 h. Single line tracks of the powders were laser melted. Optical and scanning electron microscopy, XRD analysis and differential scanning calorimetry were used to study microstructural evolution. The results showed that the Cu addition promotes an effective mechanical alloying of aluminum with Ti O2 from the start of milling, resulting in higher microhardness(up to HV 290), while the PCA, on the contrary, postpones this process. In both cases, the composite granules with uniform distribution of Ti O2 particles were formed. Subsequent heating of mechanically alloyed materials causes the activation of an exothermic reaction of Ti O2 reduction with aluminum, the start temperature of which, in the case of Cu addition,shifts to lower values, that is, the transformation begins in the solid state. Besides, the Cu-added material after laser melting demonstrates a more dispersed and uniform structure which positively affects its microhardness.
基金Projects(21306041,21271071)supported by the National Natural Science Foundation of ChinaProject(15A076)supported by the Scientific Research Foundation of Hunan Provincial Education Department of China
文摘ZnO/ZnGa_2O_4 composite microspheres with heterojunction were successfully synthesized by one-pot hydrothermal method.These samples were characterized by TG/DTA,XRD,TEM,HRTEM,UV-vis DRS,FL and BET techniques.The results indicated the as-prepared samples showed better degree of crystalline and large specific surface area.The photocatalytic activity was evaluated by degradation of methyl orange with the concentration of 50 mg/L under the irradiation of simulated sunlight.The effects of molar ratio of Zn to Ga and calcination temperature on the photocatalytic activity were investigated in detail.The results showed that the highest photocatalytic degradation efficiency was observed at the molar ratio of Zn to Ga of 1:0.5 in the starting materials and the calcination temperature of 400 °C.The maximum photocatalytic degradation rate of MO was 97.1% within 60 min under the simulated sunlight irradiation,which is greatly higher than that of ZnO and ZnGa_2O_4.
基金supported by the National Natural Science Foundation of China(Nos.51705249, 52075255)the China Postdoctoral Science Foundation (No.2019M661823)
文摘Silicon carbide particle reinforced aluminum matrix composites(SiCp/Al composites)are widely used in aviation,aerospace and electronic package.However,low machining efficiency,severe tool wear and poor surface quality are severe during the machining of SiCp/Al composites.Laser-induced oxidation is capable to improve the machinability of SiCp/Al composites.The material response of 55%(volume fraction)SiCp/Al composites induced by a nanosecond pulsed laser is studied.A metamorphic layer which is composed of an oxide layer and sub-layer is produced.The effects of reaction surrounding and laser average power on the microstructure and thickness of the oxide layer and sub-layer are investigated.Experimental results show that:A thicker oxide layer and a sub-layer are formed in an oxygen-rich atmosphere.The oxides are mainly composed of 2Al2O3·SiO2(mullite).A positive correlation between the laser average power and thicknesses of oxide layers and sub-layers is found.A loose oxide layer of 138μm and a sub-layer of 21μm are formed at the laser average power of 6 W,laser scanning pitch of 10μm,and laser scanning speed of 1 mm/s under an oxygen-rich atmosphere.The high efficient machining of Si Cp/Al composites can be realized by laser-induced oxidation.
基金UGC, New Delhi, India, for the award of Post-Doctoral Fellowship to K.O.Nayana(Award No: F.15-1/2015-16/PDFWM-2015-17KAR-31527(SA-Ⅱ))
文摘Ni?Co3O4 composite coatings were electrodeposited on mild steel surface from a Watts-type bath in the presence of sodium lauryl sulfate(SLS).The dispersed Co3O4 particles in the presence of SLS have a greater tendency to move towards cathode and get incorporated in the coating.SLS modifies chemical composition,surface morphology and microstructure of the Ni?Co3O4 composite coating.The developed composite coating exhibits higher corrosion resistance and microhardness than the pure nickel coating.The loadings of bath solution with different concentrations of Co3O4 particles in the presence of SLS provide hydrophobic nature to the coating surface,which is much effective in enhancing the corrosion resistance of Ni?Co3O4 composite coating.The agglomeration of Co3O4 particles(>3 g/L)under high bath load condition develops defects and dislocation on the coating surface,which results in lower corrosion resistance of the deposit.The mechanical properties of the hydrophobic coatings were assessed by the linear abrasion test.
基金Supported by subproject of the China’s "Ninth Five Year Plan" Scientific Research Project No. 97-926-04-03 the Natural Science Foundation of China (No. 40076020, 40376022) the Doctoral Research Program of Higher Education (No. 98042304) and KZ95T-04-04-04 Fund.
文摘Copper complexing ligands concentration (C C) and conditional stability constant of the sea surface microlayer (SML) and subsurface layer (SSL) samples, collected from Daya Bay of Guangdong Province and Jiaozhou Bay of Shandong Province, were determined by anodic stripping voltammetry (ASV) technique. C C of Daya Bay in the SML ranged from 6.19×10-7 to 3.52×10-7 mol/L. C C of Jiaozhou Bay in the SML ranged from 5.30×10-7 to 3.03×10-7 mol/L in August 1998 and from 3.46×10-7 to 1.36×10-7 mol/L in May 2000. The C C concentrations were higher in all surface microlayer samples, compared with corresponding subsurface samples. The average enrichment factors of copper complexation in the SML observed above were 1.58, 1.41 and 1.56, respectively. The enrichment of C C concentration in the microlayer demonstrated that organic ligands had certain buffer action on the toxicity of the enriched trace metals in the same layer. Conditional stability constants of the SML in Jiaozhou Bay were lower than those of the SSL; however, it showed just opposite for Daya Bay. BOD (biological oxygen demand) and COD (chemical oxygen demand) indicated the organic matter content, also showed enriched in the SML. C C had an obvious relationship with BOD or COD.
基金Acknowledgments: This work was supported by the National Natural Science Foundation of China (No. 20673042), the Natural Science Foundation of Anhui Provincial Education Committee (No. K12007B014), the Natural Science Foundation of Anhui Province (No. 070415211), China Postdoctoral Science Foundation (No. 2004036511), the Laboratory Open Foundation of Green Materials Chemistry (No. KLSF(I)09), and the Laboratory Open Foundation of Guangdong Public Laboratory of Environmental Science and Technology. The authors thank Mr. LUO S. M., Mr. CHEN D. Z., and Mr. TAO Q. for their assistance.
文摘The nanosized binary mixed oxides of Zn/Sn had been prepared by the fractional homogeneous precipitation route using urea as the latent precipitant under boiling reflux condition The samples prepared with the different initial concentrations of urea or calcined at different temperatures had been investigated by X-ray diffration (XRD) or transmission electron microscopy (TEM). The calcination temperature had obvious effect on the phase composition and the crystal size of the samples attained, and the precipitant concentration also had obvious effect on the oxide particles size and the production rate of ZnO.
文摘This study aimed to analyze the mechanical properties of the compound FeCuC when compacted at varying pressures and sintered in two different types of furnaces. Besides the different models of furnace, the working atmospheres were varied: one is being composed with argon gas and another constituted with a balancing nitrogen and hydrogen. Atmospheres vary with the amount of production and the type of equipment used. The compound generated is used in the manufacture of rings for mechanical seals and is currently manufactured by the sintering process in passing furnace. The sintering was performed in a static furnace with argon atmosphere and compared with the same compound sintered in passage furnace with hydrogen and nitrogen atmosphere. The analysis of the properties of the tested material was performed with the aid of metallography using a scanning electron microscope, which verified the particle size distribution, chemical elements and pores present. Brinell hardness and Vickers micro hardness tests were also used to analyze the properties of this material after completion of the two processes. Thus, the research carried out has shown that variations may occur in the mechanical properties when processed in different furnace types and different sintering atmospheres.
文摘The dynamic distribution of phosphorylated Histone H3 on Ser10 (phospho-H3) in cells was investigated to determineits function during mitosis. Human breast adenocarcinoma cells MCF-7, and Chinese hamster cells CHO were analyzedby indirect immunofluorescence staining with an antibody against phospho-H3. We found that the phosphorylationbegins at early prophase, and spreads throughout the chromosomes at late prophase. At metaphase, most of the phospho-H3 aggregates at the end of the condensed entity of chromosomes at equatorial plate. During anaphase and telophase,the fluorescent signal of phospho-H3 is detached from chromosomes into cytoplasm. At early anaphase, phospho-H3shows ladder bands between two sets of separated chromosome, and forms “sandwich-like structure” when the chro-mosomes condensed. With the cleavage progressing, the “ladders” of the histone contract into a bigger bright dot. Thenthe histone aggregates and some of compacted microtubules in the midbody region are composed into a “bar-like”complex to separate daughter cells. The daughter cells seal their plasma membrane along with the ends of the “bar”,inside which locates microtubules and modified histones, to finish the cytokinesis and keep the “bar complex” out of thecells. The specific distribution and kinetics of phospho-H3 in cytoplasm suggest that the modified histones may takepart in the formation of midbody and play a crucial role in cytokinesis.
基金Project(50872052) supported by the National Natural Science Foundation of ChinaProject(2009AA05Z313) supported by the National High Technology Research and Development Program of ChinaProject supported by the Commission of Science,Technology and Industry for National Defence,China
文摘Aiming at developing novel microwave-transparent ceramics with low dielectric loss, high thermal conductivity and high strength, Si3Na-AIN (30%, mass fraction) composite ceramics with La203 as sintering additive were prepared by hot-pressing at 1 800 ℃ and subsequently annealed at 1 450 ℃ and 1 850 ℃ for 2 h and 4 h, respectively. The materials were characterized by XRD and SEM. The effect of annealing process on the phase composition, sintering performance, microstructure, bending strength, dielectric loss and thermal conductivity of the materials was investigated. The results showed that both annealing at 1 850 ℃ and 1 450 ℃ promoted the phase transformation of α-Si3N4 to β-Si3N4. After annealing at 1 850 ℃, grain growth to a certain extent occurred in the materials. Especially, the elongated β-Si3N4 grains showed a slight increase in diameter from 0.2 μm to 0.6 μm approximately and a decrease in aspect ratio. As a result, as the annealing time increased to 4 h, the bending strength declined from 456 MPa to 390 MPa, whereas the dielectric loss decreased to 2.15× 10^-3 and the thermal conductivity increased to 16.3 W/(m.K) gradually. When annealed at 1 450 ℃, increasing the annealing time to 4 h significantly promoted the crystallization of glassy phase to La2Si6N803 phase in the materials, which led to the increase in bending strength to 619 MPa and thermal conductivity to 15.9 W/(m·K), respectively, and simultaneously the decrease in dielectric loss to 1.53× 10^-3.