A series of microcrystalline silicon thin films were fabricated by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) at different silane concentrations in a P chamber. Through analysis of the...A series of microcrystalline silicon thin films were fabricated by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) at different silane concentrations in a P chamber. Through analysis of the structural and electrical properties of these materials,we conclude that the photosensitivity slightly decreased then increased as the silane concentration increased,while the crystalline volume fraction indicates the opposite change. Results of XRD indicate that thin films have a (220) preferable orientation under certain conditions. Microcrystalline silicon solar cells with conversion efficiency 4. 7% and micromorph tandem solar cells 8.5% were fabricated by VHF-PECVD (p layer and i layer of microcrystalline silicon solar cells were deposited in P chamber), respectively.展开更多
A vacuum directional solidification with high temperature gradient was performed to prepare low cost solar-grade multicrystalline silicon (mc-Si) directly from metallurgical-grade mc-Si. The microstructure character...A vacuum directional solidification with high temperature gradient was performed to prepare low cost solar-grade multicrystalline silicon (mc-Si) directly from metallurgical-grade mc-Si. The microstructure characteristic, grain size, boundary, solid-liquid growth interface, and dislocation structure under different growth conditions were studied. The results show that directionally solidified multicrystalline silicon rods with high density and orientation can be obtained when the solidification rate is below 60 μm/s. The grain size gradually decreases with increasing the solidification rate. The control of obtaining planar solid-liquid interface at high temperature gradient is effective to produce well-aligned columnar grains along the solidification direction. The growth step and twin boundaries are preferred to form in the microstructure due to the faceted growth characteristic of mc-Si. The dislocation distribution is inhomogeneous within crystals and the dislocation density increases with the increase of solidification rate. Furthermore, the crystal growth behavior and dislocation formation mechanism of mc-Si were discussed.展开更多
A series of samples deposited by VHF-PECVD at different pressures were studied.The measurement results of photosensitivity (photo conductivity/dark conductivity) and activation energy indicated near the same rule with...A series of samples deposited by VHF-PECVD at different pressures were studied.The measurement results of photosensitivity (photo conductivity/dark conductivity) and activation energy indicated near the same rule with the change of the pressure.The results measured by Raman scattering spectra,X-ray diffraction and FTIR all proved the evident crystallization of the materials.Treating the p/i interface by hydrogen has a great improving effect on the performance of the microcrystalline silicon (μc-Si) p-i-n solar cells if the treatment time was appropriate.An efficiency of 4.24% for μc-Si p-i-n solar cells deposited by VHF-PECVD was firstly obtained.展开更多
Atomic force microscope (AFM) is able to produce three-dimensional digital data in both force-mode and height-mode and its applications are not limited to map the surfaces of conducting materials. It can use the force...Atomic force microscope (AFM) is able to produce three-dimensional digital data in both force-mode and height-mode and its applications are not limited to map the surfaces of conducting materials. It can use the force-mode to image the repulsive and attractive force patterns. The cross sections of polycrystalline CdS/CdTe and amorphous silicon heterojunction solar cells are observed with AFM. In case of short circuit, the microstructures of different layers in the samples are clearly displayed. When the cells are open circuit, the topographical images are altered, the potential outline due to the space charge in junction region is observed. Obviously, AFM can be employed to investigate experimentally built-in potential in junction of semiconductor devices, such as solar cells.展开更多
The investigation of multi-crystalline silicon (mc-Si) surface etching technology is a key point in solar cell research. In this paper, mc-Si surface was etched in the common alkaline solution modified by an additiv...The investigation of multi-crystalline silicon (mc-Si) surface etching technology is a key point in solar cell research. In this paper, mc-Si surface was etched in the common alkaline solution modified by an additive for 20 minutes at 78-80~C. Samples' surface morphology was observed by scanning electron microscope (SEM). It is firstly found that the etched mc-Si surface has the uniform distribution of trap pits although the morphologies of trap pits are slightly different on different crystallographic planes. Si (100) plane was covered with many small Si-mountaln ranges or long V-shape channels arranged in a crisscross pat- tern. For (110) plane and (111) plane, they were full of a lot of triangle pit-traps (or quadrilateral holes) and twisted earthworm trap pits, respectively. The measured reflectance of the sample was 20.5% at wavelength range of 400--900 nm. These results illustrate that alkaline solution modified by an additive can effectively etch out trap pits with a good trapping light effect on mc-Si surfaces. This method should be very valuable for mc-Si solar cells.展开更多
In this paper, we tion (SHJ) solar cells with prepared silicon heterojunc- the structure of p-c-Si/i-a- SiOx:H/n-μc-SiOx:H (a-SiOx:H, oxygen rich amorphous silicon oxide; μc-SiOx:H, microcrystalline silicon o...In this paper, we tion (SHJ) solar cells with prepared silicon heterojunc- the structure of p-c-Si/i-a- SiOx:H/n-μc-SiOx:H (a-SiOx:H, oxygen rich amorphous silicon oxide; μc-SiOx:H, microcrystalline silicon oxide) by plasma-enhanced chemical vapor deposition method. The influence of the n-μc-SiOx:H emitter thickness on the heterointerface passivation in SHJ solar cells was investi- gated. With increasing thickness, the crystallinity of the emitter as well as its dark conductivity increases. Mean- while, the effective minority carrier lifetime (teff) of the SHJ solar cell precursors at low injection level shows a pronounced increase trend, implying that an improved field effect passivation is introduced as the emitter is deposited. And, an increased μTelf is also observed at entire injection level due to the interfacial chemical passivation improved by the hydrogen diffusion along with the emitter deposition. Based on the analysis on the external quantum effi- ciency of the SHJ solar cells, it can be expected that the high efficient SHJ solar cells could be obtained by improving the heterointerface passivation and optimizing the emitter deposition process.展开更多
Kelvin probe force microscopy(KPFM) could identify the local work function of surface at nanoscale with high-resolution on the basis of simultaneous visualization of surface topography, which provides a unique route t...Kelvin probe force microscopy(KPFM) could identify the local work function of surface at nanoscale with high-resolution on the basis of simultaneous visualization of surface topography, which provides a unique route to in-situ study of the surface information like the composition and electronic states. Currently, as a non-destructive detection protocol, KPFM demonstrates the unique potential to probe the basic nature of perovskite materials that is extremely sensitive to water, oxygen and electron beam irradiation. This paper systematically introduces the fundamentals and working mode of KPFM, and elaborates the promising applications in perovskite solar cells for energy band structures and carrier transport dynamics, trap states, crystal phases, as well as ion migration explorations. The comprehensive understanding of such potential detection engineering may provide novel and effective approaches for unraveling the unique properties of perovskite solar cells.展开更多
The DS(directional solidification) polycrystalline silicon ingot is the most important photovoltaic material today,and the conversion efficiency of solar cells is affected by the morphology and organization of the cry...The DS(directional solidification) polycrystalline silicon ingot is the most important photovoltaic material today,and the conversion efficiency of solar cells is affected by the morphology and organization of the crystal.Uniform grains with larger size are conducive to get high-quality wafer,so improving the cell conversion efficiency.However,grains sizes that are less than 1 mm2 can be observed frequently in the central district of mc-Si ingots,which bring negative effect to the quality of the mc-Si ingot and decrease the electrical performance of wafer.In this paper,we make an attempt to explain the formation mechanism and influence factors of microcrystal in mc-Si ingot with computer simulation technology and theory of component supercooling.It was found that:to avoid production of microcrystal,it's better to increase the value of G/V(V is the growth rate and G is the near-interface temperature gradient),strengthen the melt convection front in the solidification interface and keep a fairly flat solid/melt interface in producing mc-Si ingot.展开更多
Two new conjugated copolymers, PBDT-T6-TTF and PBDT-T12-TTF, were derived from a novel 4-fluorobenzoyl thienothi- ophene (TTF). In addition, two types of benzodithiophene (BDT) units with 2,3-dihexylthienyl (T6)...Two new conjugated copolymers, PBDT-T6-TTF and PBDT-T12-TTF, were derived from a novel 4-fluorobenzoyl thienothi- ophene (TTF). In addition, two types of benzodithiophene (BDT) units with 2,3-dihexylthienyl (T6) and 2,3-didodecylthienyl (T12) substituents, respectively, were successfully synthesized. The effect of the dual two-dimensional (2D) substitutions of the building blocks upon the optoelectronic properties of the polymers was investigated. Generally, the two polymers exhibited good solubility and broad absorption, showing similar optical band gaps of ~1.53 eV. However, PBDT-T6-TTF with its shorter alkyl chain length possessed a larger extinction coefficient in thin solid film. The highest occupied molecular orbital (HOMO) level of PBDT-T6-TTF was located at -5.38 eV while that of PBDT-T12-TTF was at -5.51 eV. In space charge-limited- current (SCLC) measurement, PBDT-T6-TTF and PBDT-T12-TTF displayed respective hole mobilities of 3.0~10-~ and 1.6x10 5 cm2 V-1 s-l. In polymer solar cells, PBDT-T6-TTF and PBDT-T12-TTF showed respective power conversion efficiencies (PCEs) of 2.86% and 1.67%. When 1,8-diiodooctane (DIO) was used as the solvent additive, the PCE of PBDT-T6-TTF was remarkably elevated to 4.85%, but the use of DIO for the PBDT-T12-TTF-blend film resulted in a lower PCE of 0.91%. Atomic force microscopy (AFM) indicated that the superior efficiency of PBDT-T6-TTF with 3% DIO (v/v) should be related to the better continuous phase separation of the blend film. Nevertheless, the morphology of the PBDT-T12-TTF deteriorated when the 3% DIO (v/v) was added. Our results suggest that the alkyl-chain length on the 2D BDT units play an important role in determining the optoelectronic properties of dual 2D BDT-TT-based polymers.展开更多
A series of hydrogenated microcrystalline silicon (μc-Si:H) p-layers for back surface field in crystalline silicon solar cells were deposited on glass substrates by the developed large area (45 cm×45 cm) pl...A series of hydrogenated microcrystalline silicon (μc-Si:H) p-layers for back surface field in crystalline silicon solar cells were deposited on glass substrates by the developed large area (45 cm×45 cm) plasma enhanced chemical vapour deposition processor operating at 13.56 MHz and various values of source gas trimethylboron (TMB) to H2 flowratio. The influence of deposition parameters on the large area p-layer performance was intensively studied, as well as the thin film uniformity, optical, electrical and structural performances by Raman, PTIR, Ellipsometry, etc. Arrhenius and Tauc plots were used to discuss the μc-Si:H thin film's activation energy and the defects state distribution. When amorphous-microcrystalline transition state was obtained, the deposited p-doped μc-Si:H layers showed specific resistance of 38.3 Ω^-1cm1 at the flowratio of 0.66% and high crystallinity of 45%-50% with no further treatment. The effect of source gas flowratio, deposition rate, and source gas partial pressure on μc-Si:H thin film's performance was also investigated.展开更多
文摘A series of microcrystalline silicon thin films were fabricated by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) at different silane concentrations in a P chamber. Through analysis of the structural and electrical properties of these materials,we conclude that the photosensitivity slightly decreased then increased as the silane concentration increased,while the crystalline volume fraction indicates the opposite change. Results of XRD indicate that thin films have a (220) preferable orientation under certain conditions. Microcrystalline silicon solar cells with conversion efficiency 4. 7% and micromorph tandem solar cells 8.5% were fabricated by VHF-PECVD (p layer and i layer of microcrystalline silicon solar cells were deposited in P chamber), respectively.
基金Projects (51002122, 51272211) supported by the National Natural Science Foundation of ChinaProject (2010ZF53064) supported by the Aeronautical Science Foundation of China+3 种基金Project (2012M51028) supported by the Postdoctoral Science Foundation of ChinaProject (2010JQ6005) supported by the Natural Science Foundation of Shaanxi Province, ChinaProject (76-QP-2011) supported by the Research Fund of State Key Laboratory of Solidification Processing in NWPU, ChinaProject (B08040) supported by the 111Project, China
文摘A vacuum directional solidification with high temperature gradient was performed to prepare low cost solar-grade multicrystalline silicon (mc-Si) directly from metallurgical-grade mc-Si. The microstructure characteristic, grain size, boundary, solid-liquid growth interface, and dislocation structure under different growth conditions were studied. The results show that directionally solidified multicrystalline silicon rods with high density and orientation can be obtained when the solidification rate is below 60 μm/s. The grain size gradually decreases with increasing the solidification rate. The control of obtaining planar solid-liquid interface at high temperature gradient is effective to produce well-aligned columnar grains along the solidification direction. The growth step and twin boundaries are preferred to form in the microstructure due to the faceted growth characteristic of mc-Si. The dislocation distribution is inhomogeneous within crystals and the dislocation density increases with the increase of solidification rate. Furthermore, the crystal growth behavior and dislocation formation mechanism of mc-Si were discussed.
文摘A series of samples deposited by VHF-PECVD at different pressures were studied.The measurement results of photosensitivity (photo conductivity/dark conductivity) and activation energy indicated near the same rule with the change of the pressure.The results measured by Raman scattering spectra,X-ray diffraction and FTIR all proved the evident crystallization of the materials.Treating the p/i interface by hydrogen has a great improving effect on the performance of the microcrystalline silicon (μc-Si) p-i-n solar cells if the treatment time was appropriate.An efficiency of 4.24% for μc-Si p-i-n solar cells deposited by VHF-PECVD was firstly obtained.
文摘Atomic force microscope (AFM) is able to produce three-dimensional digital data in both force-mode and height-mode and its applications are not limited to map the surfaces of conducting materials. It can use the force-mode to image the repulsive and attractive force patterns. The cross sections of polycrystalline CdS/CdTe and amorphous silicon heterojunction solar cells are observed with AFM. In case of short circuit, the microstructures of different layers in the samples are clearly displayed. When the cells are open circuit, the topographical images are altered, the potential outline due to the space charge in junction region is observed. Obviously, AFM can be employed to investigate experimentally built-in potential in junction of semiconductor devices, such as solar cells.
基金supported by the Shanghai Aerospace Foundation (Grant No. GC072003)
文摘The investigation of multi-crystalline silicon (mc-Si) surface etching technology is a key point in solar cell research. In this paper, mc-Si surface was etched in the common alkaline solution modified by an additive for 20 minutes at 78-80~C. Samples' surface morphology was observed by scanning electron microscope (SEM). It is firstly found that the etched mc-Si surface has the uniform distribution of trap pits although the morphologies of trap pits are slightly different on different crystallographic planes. Si (100) plane was covered with many small Si-mountaln ranges or long V-shape channels arranged in a crisscross pat- tern. For (110) plane and (111) plane, they were full of a lot of triangle pit-traps (or quadrilateral holes) and twisted earthworm trap pits, respectively. The measured reflectance of the sample was 20.5% at wavelength range of 400--900 nm. These results illustrate that alkaline solution modified by an additive can effectively etch out trap pits with a good trapping light effect on mc-Si surfaces. This method should be very valuable for mc-Si solar cells.
文摘In this paper, we tion (SHJ) solar cells with prepared silicon heterojunc- the structure of p-c-Si/i-a- SiOx:H/n-μc-SiOx:H (a-SiOx:H, oxygen rich amorphous silicon oxide; μc-SiOx:H, microcrystalline silicon oxide) by plasma-enhanced chemical vapor deposition method. The influence of the n-μc-SiOx:H emitter thickness on the heterointerface passivation in SHJ solar cells was investi- gated. With increasing thickness, the crystallinity of the emitter as well as its dark conductivity increases. Mean- while, the effective minority carrier lifetime (teff) of the SHJ solar cell precursors at low injection level shows a pronounced increase trend, implying that an improved field effect passivation is introduced as the emitter is deposited. And, an increased μTelf is also observed at entire injection level due to the interfacial chemical passivation improved by the hydrogen diffusion along with the emitter deposition. Based on the analysis on the external quantum effi- ciency of the SHJ solar cells, it can be expected that the high efficient SHJ solar cells could be obtained by improving the heterointerface passivation and optimizing the emitter deposition process.
基金supported by the National Key Research and Development Program of China (2016YFA0202701)the Overseas Expertise Introduction Projects for Discipline Innovation (111 project, B14003)+4 种基金the National Natural Science Foundation of China (51527802, 51232001, 51702014 and 51372020)the National Major Research Program of China (2013CB932602)Beijing Municipal Science & Technology Commission (Z161100002116027)the State Key Laboratory for Advanced Metals and Materialsthe Fundamental Research Funds for the Central Universities (FRF-TP-18-042A1)
文摘Kelvin probe force microscopy(KPFM) could identify the local work function of surface at nanoscale with high-resolution on the basis of simultaneous visualization of surface topography, which provides a unique route to in-situ study of the surface information like the composition and electronic states. Currently, as a non-destructive detection protocol, KPFM demonstrates the unique potential to probe the basic nature of perovskite materials that is extremely sensitive to water, oxygen and electron beam irradiation. This paper systematically introduces the fundamentals and working mode of KPFM, and elaborates the promising applications in perovskite solar cells for energy band structures and carrier transport dynamics, trap states, crystal phases, as well as ion migration explorations. The comprehensive understanding of such potential detection engineering may provide novel and effective approaches for unraveling the unique properties of perovskite solar cells.
基金supported by the Natural Science Foundation of Jiangsu Province of China (Grant No BK2008548)
文摘The DS(directional solidification) polycrystalline silicon ingot is the most important photovoltaic material today,and the conversion efficiency of solar cells is affected by the morphology and organization of the crystal.Uniform grains with larger size are conducive to get high-quality wafer,so improving the cell conversion efficiency.However,grains sizes that are less than 1 mm2 can be observed frequently in the central district of mc-Si ingots,which bring negative effect to the quality of the mc-Si ingot and decrease the electrical performance of wafer.In this paper,we make an attempt to explain the formation mechanism and influence factors of microcrystal in mc-Si ingot with computer simulation technology and theory of component supercooling.It was found that:to avoid production of microcrystal,it's better to increase the value of G/V(V is the growth rate and G is the near-interface temperature gradient),strengthen the melt convection front in the solidification interface and keep a fairly flat solid/melt interface in producing mc-Si ingot.
基金financially supported by the National Natural Science Foundation of China(21225418 and 51173048)the National Basic Research Program of China(2013CB834705 and 2014CB643505)GDUPS(2013)
文摘Two new conjugated copolymers, PBDT-T6-TTF and PBDT-T12-TTF, were derived from a novel 4-fluorobenzoyl thienothi- ophene (TTF). In addition, two types of benzodithiophene (BDT) units with 2,3-dihexylthienyl (T6) and 2,3-didodecylthienyl (T12) substituents, respectively, were successfully synthesized. The effect of the dual two-dimensional (2D) substitutions of the building blocks upon the optoelectronic properties of the polymers was investigated. Generally, the two polymers exhibited good solubility and broad absorption, showing similar optical band gaps of ~1.53 eV. However, PBDT-T6-TTF with its shorter alkyl chain length possessed a larger extinction coefficient in thin solid film. The highest occupied molecular orbital (HOMO) level of PBDT-T6-TTF was located at -5.38 eV while that of PBDT-T12-TTF was at -5.51 eV. In space charge-limited- current (SCLC) measurement, PBDT-T6-TTF and PBDT-T12-TTF displayed respective hole mobilities of 3.0~10-~ and 1.6x10 5 cm2 V-1 s-l. In polymer solar cells, PBDT-T6-TTF and PBDT-T12-TTF showed respective power conversion efficiencies (PCEs) of 2.86% and 1.67%. When 1,8-diiodooctane (DIO) was used as the solvent additive, the PCE of PBDT-T6-TTF was remarkably elevated to 4.85%, but the use of DIO for the PBDT-T12-TTF-blend film resulted in a lower PCE of 0.91%. Atomic force microscopy (AFM) indicated that the superior efficiency of PBDT-T6-TTF with 3% DIO (v/v) should be related to the better continuous phase separation of the blend film. Nevertheless, the morphology of the PBDT-T12-TTF deteriorated when the 3% DIO (v/v) was added. Our results suggest that the alkyl-chain length on the 2D BDT units play an important role in determining the optoelectronic properties of dual 2D BDT-TT-based polymers.
基金supported by the National "863" Project of China (Grant No.2006AA05Z409)the "Kaisi" Oversea R&D Schol-arship of Sun Yat-sen University
文摘A series of hydrogenated microcrystalline silicon (μc-Si:H) p-layers for back surface field in crystalline silicon solar cells were deposited on glass substrates by the developed large area (45 cm×45 cm) plasma enhanced chemical vapour deposition processor operating at 13.56 MHz and various values of source gas trimethylboron (TMB) to H2 flowratio. The influence of deposition parameters on the large area p-layer performance was intensively studied, as well as the thin film uniformity, optical, electrical and structural performances by Raman, PTIR, Ellipsometry, etc. Arrhenius and Tauc plots were used to discuss the μc-Si:H thin film's activation energy and the defects state distribution. When amorphous-microcrystalline transition state was obtained, the deposited p-doped μc-Si:H layers showed specific resistance of 38.3 Ω^-1cm1 at the flowratio of 0.66% and high crystallinity of 45%-50% with no further treatment. The effect of source gas flowratio, deposition rate, and source gas partial pressure on μc-Si:H thin film's performance was also investigated.