期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
微能源发展概述 被引量:9
1
作者 秦冲 苑伟政 +1 位作者 孙磊 乔大勇 《光电子技术》 CAS 2005年第4期218-221,225,共5页
产品小型化、微型化、集成化是当今技术发展的大趋势,能源供应已成为制约产品微型化技术发展的瓶颈,其微型化问题受到广泛的重视。结合目前国内外微能源的发展现状,分别介绍了微太阳能电池、同位素微能源和基于卡门涡街的压电微能源等... 产品小型化、微型化、集成化是当今技术发展的大趋势,能源供应已成为制约产品微型化技术发展的瓶颈,其微型化问题受到广泛的重视。结合目前国内外微能源的发展现状,分别介绍了微太阳能电池、同位素微能源和基于卡门涡街的压电微能源等几种典型的微能源,并展望了微能源的发展趋势和应用前景。 展开更多
关键词 能源 微太阳能电池 同位素能源 基于卡门涡街的压电能源
下载PDF
Doped-Chamber Deposition of Intrinsic Microcrystalline Silicon Thin Films and Its Application in Solar Cells 被引量:1
2
作者 孙福河 张晓丹 +9 位作者 赵颖 王世峰 韩晓艳 李贵军 魏长春 孙建 侯国付 张德坤 耿新华 熊绍珍 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第5期855-858,共4页
A series of microcrystalline silicon thin films were fabricated by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) at different silane concentrations in a P chamber. Through analysis of the... A series of microcrystalline silicon thin films were fabricated by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) at different silane concentrations in a P chamber. Through analysis of the structural and electrical properties of these materials,we conclude that the photosensitivity slightly decreased then increased as the silane concentration increased,while the crystalline volume fraction indicates the opposite change. Results of XRD indicate that thin films have a (220) preferable orientation under certain conditions. Microcrystalline silicon solar cells with conversion efficiency 4. 7% and micromorph tandem solar cells 8.5% were fabricated by VHF-PECVD (p layer and i layer of microcrystalline silicon solar cells were deposited in P chamber), respectively. 展开更多
关键词 VHF-PECVD intrinsic microcrystalline silicon solar cells
下载PDF
Preparation, microstructure and dislocation of solar-grade multicrystalline silicon by directional solidification from metallurgical-grade silicon 被引量:5
3
作者 苏海军 张军 +1 位作者 刘林 傅恒志 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2548-2553,共6页
A vacuum directional solidification with high temperature gradient was performed to prepare low cost solar-grade multicrystalline silicon (mc-Si) directly from metallurgical-grade mc-Si. The microstructure character... A vacuum directional solidification with high temperature gradient was performed to prepare low cost solar-grade multicrystalline silicon (mc-Si) directly from metallurgical-grade mc-Si. The microstructure characteristic, grain size, boundary, solid-liquid growth interface, and dislocation structure under different growth conditions were studied. The results show that directionally solidified multicrystalline silicon rods with high density and orientation can be obtained when the solidification rate is below 60 μm/s. The grain size gradually decreases with increasing the solidification rate. The control of obtaining planar solid-liquid interface at high temperature gradient is effective to produce well-aligned columnar grains along the solidification direction. The growth step and twin boundaries are preferred to form in the microstructure due to the faceted growth characteristic of mc-Si. The dislocation distribution is inhomogeneous within crystals and the dislocation density increases with the increase of solidification rate. Furthermore, the crystal growth behavior and dislocation formation mechanism of mc-Si were discussed. 展开更多
关键词 multi-crystalline silicon metallurgical-grade silicon silicon solar cell directional solidification MICROSTRUCTURE
下载PDF
Microcrystalline Silicon Materials and Solar Cells Prepared by VHF-PECVD
4
作者 ZHANGXiao-dan ZHUFeng ZHAOYing SUNJian WEIChang-chun HOUGuo-fu GENGXin-hua XIONGShao-zhen 《Semiconductor Photonics and Technology》 CAS 2004年第3期186-189,共4页
A series of samples deposited by VHF-PECVD at different pressures were studied.The measurement results of photosensitivity (photo conductivity/dark conductivity) and activation energy indicated near the same rule with... A series of samples deposited by VHF-PECVD at different pressures were studied.The measurement results of photosensitivity (photo conductivity/dark conductivity) and activation energy indicated near the same rule with the change of the pressure.The results measured by Raman scattering spectra,X-ray diffraction and FTIR all proved the evident crystallization of the materials.Treating the p/i interface by hydrogen has a great improving effect on the performance of the microcrystalline silicon (μc-Si) p-i-n solar cells if the treatment time was appropriate.An efficiency of 4.24% for μc-Si p-i-n solar cells deposited by VHF-PECVD was firstly obtained. 展开更多
关键词 VHF-PECVD Microcrystalline silicon Solar cells High pressure
下载PDF
Observation on Surface and Cross Section of Thin Film Solar Cells Using Atomic Force Microscope
5
作者 FENGLiang-huan WULi-li CAIWei CAIYa-ping ZHENGJia-gui ZHANGJing-quan LIBing LIWei 《Semiconductor Photonics and Technology》 CAS 2005年第2期111-115,共5页
Atomic force microscope (AFM) is able to produce three-dimensional digital data in both force-mode and height-mode and its applications are not limited to map the surfaces of conducting materials. It can use the force... Atomic force microscope (AFM) is able to produce three-dimensional digital data in both force-mode and height-mode and its applications are not limited to map the surfaces of conducting materials. It can use the force-mode to image the repulsive and attractive force patterns. The cross sections of polycrystalline CdS/CdTe and amorphous silicon heterojunction solar cells are observed with AFM. In case of short circuit, the microstructures of different layers in the samples are clearly displayed. When the cells are open circuit, the topographical images are altered, the potential outline due to the space charge in junction region is observed. Obviously, AFM can be employed to investigate experimentally built-in potential in junction of semiconductor devices, such as solar cells. 展开更多
关键词 AFM MORPHOLOGY thin film solar cells
下载PDF
Experiment study on micro-structure on different crystallographic planes of mc-Si etched in alkaline solution 被引量:1
6
作者 WANG KunXia FENG ShiMeng +4 位作者 XU HuaTian TIAN JiaTong YANG ShuQuan HUANG JianHua PEI Jun 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第6期1509-1514,共6页
The investigation of multi-crystalline silicon (mc-Si) surface etching technology is a key point in solar cell research. In this paper, mc-Si surface was etched in the common alkaline solution modified by an additiv... The investigation of multi-crystalline silicon (mc-Si) surface etching technology is a key point in solar cell research. In this paper, mc-Si surface was etched in the common alkaline solution modified by an additive for 20 minutes at 78-80~C. Samples' surface morphology was observed by scanning electron microscope (SEM). It is firstly found that the etched mc-Si surface has the uniform distribution of trap pits although the morphologies of trap pits are slightly different on different crystallographic planes. Si (100) plane was covered with many small Si-mountaln ranges or long V-shape channels arranged in a crisscross pat- tern. For (110) plane and (111) plane, they were full of a lot of triangle pit-traps (or quadrilateral holes) and twisted earthworm trap pits, respectively. The measured reflectance of the sample was 20.5% at wavelength range of 400--900 nm. These results illustrate that alkaline solution modified by an additive can effectively etch out trap pits with a good trapping light effect on mc-Si surfaces. This method should be very valuable for mc-Si solar cells. 展开更多
关键词 mc-Si wafers chemical etching surface structure trapping effect reflectance
原文传递
Improved hetero-interface passivation by microcrystalline silicon oxide emitter in silicon heterojunction solar cells 被引量:4
7
作者 Yu Zhang Ridong Cong +4 位作者 Wei Zhao Yun Li Conghui Jin Wei Yu Guangsheng Fu 《Science Bulletin》 SCIE EI CAS CSCD 2016年第10期787-793,共7页
In this paper, we tion (SHJ) solar cells with prepared silicon heterojunc- the structure of p-c-Si/i-a- SiOx:H/n-μc-SiOx:H (a-SiOx:H, oxygen rich amorphous silicon oxide; μc-SiOx:H, microcrystalline silicon o... In this paper, we tion (SHJ) solar cells with prepared silicon heterojunc- the structure of p-c-Si/i-a- SiOx:H/n-μc-SiOx:H (a-SiOx:H, oxygen rich amorphous silicon oxide; μc-SiOx:H, microcrystalline silicon oxide) by plasma-enhanced chemical vapor deposition method. The influence of the n-μc-SiOx:H emitter thickness on the heterointerface passivation in SHJ solar cells was investi- gated. With increasing thickness, the crystallinity of the emitter as well as its dark conductivity increases. Mean- while, the effective minority carrier lifetime (teff) of the SHJ solar cell precursors at low injection level shows a pronounced increase trend, implying that an improved field effect passivation is introduced as the emitter is deposited. And, an increased μTelf is also observed at entire injection level due to the interfacial chemical passivation improved by the hydrogen diffusion along with the emitter deposition. Based on the analysis on the external quantum effi- ciency of the SHJ solar cells, it can be expected that the high efficient SHJ solar cells could be obtained by improving the heterointerface passivation and optimizing the emitter deposition process. 展开更多
关键词 n-μc-SiOx:H emitter Microstructure evolution Heterointerface passivation Silicon heterojunction solar cell
原文传递
Kelvin probe force microscopy for perovskite solar cells 被引量:4
8
作者 Zhuo Kang Haonan Si +7 位作者 Mingyue Shi Chenzhe Xu Wenqiang Fan Shuangfei Ma Ammarah Kausar Qingliang Liao Zheng Zhang Yue Zhang 《Science China Materials》 SCIE EI CSCD 2019年第6期776-789,共14页
Kelvin probe force microscopy(KPFM) could identify the local work function of surface at nanoscale with high-resolution on the basis of simultaneous visualization of surface topography, which provides a unique route t... Kelvin probe force microscopy(KPFM) could identify the local work function of surface at nanoscale with high-resolution on the basis of simultaneous visualization of surface topography, which provides a unique route to in-situ study of the surface information like the composition and electronic states. Currently, as a non-destructive detection protocol, KPFM demonstrates the unique potential to probe the basic nature of perovskite materials that is extremely sensitive to water, oxygen and electron beam irradiation. This paper systematically introduces the fundamentals and working mode of KPFM, and elaborates the promising applications in perovskite solar cells for energy band structures and carrier transport dynamics, trap states, crystal phases, as well as ion migration explorations. The comprehensive understanding of such potential detection engineering may provide novel and effective approaches for unraveling the unique properties of perovskite solar cells. 展开更多
关键词 Kelvin probe force microscopy perovskite solar cells carrier transport dynamics trap states ion migration
原文传递
Analysis of microcrystal formation in DS-silicon ingot 被引量:3
9
作者 ZHANG ZhiQiang HUANG Qiang +2 位作者 HUANG ZhenFei LI BiWu CHEN Xue 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第6期1475-1480,共6页
The DS(directional solidification) polycrystalline silicon ingot is the most important photovoltaic material today,and the conversion efficiency of solar cells is affected by the morphology and organization of the cry... The DS(directional solidification) polycrystalline silicon ingot is the most important photovoltaic material today,and the conversion efficiency of solar cells is affected by the morphology and organization of the crystal.Uniform grains with larger size are conducive to get high-quality wafer,so improving the cell conversion efficiency.However,grains sizes that are less than 1 mm2 can be observed frequently in the central district of mc-Si ingots,which bring negative effect to the quality of the mc-Si ingot and decrease the electrical performance of wafer.In this paper,we make an attempt to explain the formation mechanism and influence factors of microcrystal in mc-Si ingot with computer simulation technology and theory of component supercooling.It was found that:to avoid production of microcrystal,it's better to increase the value of G/V(V is the growth rate and G is the near-interface temperature gradient),strengthen the melt convection front in the solidification interface and keep a fairly flat solid/melt interface in producing mc-Si ingot. 展开更多
关键词 polycrystalline silicon ingot MICROCRYSTAL G/V melt convection solidification interface shape
原文传递
Low band-gap benzodithiophene-thienothiophenecopolymers: the effect of dual two-dimensional substitutions on optoelectronic properties
10
作者 Zhulin Liu Jiangman Sun +5 位作者 Yongxiang Zhu Peng Liu Lianjie Zhang Junwu Chen Fei Huang Yong Cao 《Science China Chemistry》 SCIE EI CAS CSCD 2015年第2期267-275,共9页
Two new conjugated copolymers, PBDT-T6-TTF and PBDT-T12-TTF, were derived from a novel 4-fluorobenzoyl thienothi- ophene (TTF). In addition, two types of benzodithiophene (BDT) units with 2,3-dihexylthienyl (T6)... Two new conjugated copolymers, PBDT-T6-TTF and PBDT-T12-TTF, were derived from a novel 4-fluorobenzoyl thienothi- ophene (TTF). In addition, two types of benzodithiophene (BDT) units with 2,3-dihexylthienyl (T6) and 2,3-didodecylthienyl (T12) substituents, respectively, were successfully synthesized. The effect of the dual two-dimensional (2D) substitutions of the building blocks upon the optoelectronic properties of the polymers was investigated. Generally, the two polymers exhibited good solubility and broad absorption, showing similar optical band gaps of ~1.53 eV. However, PBDT-T6-TTF with its shorter alkyl chain length possessed a larger extinction coefficient in thin solid film. The highest occupied molecular orbital (HOMO) level of PBDT-T6-TTF was located at -5.38 eV while that of PBDT-T12-TTF was at -5.51 eV. In space charge-limited- current (SCLC) measurement, PBDT-T6-TTF and PBDT-T12-TTF displayed respective hole mobilities of 3.0~10-~ and 1.6x10 5 cm2 V-1 s-l. In polymer solar cells, PBDT-T6-TTF and PBDT-T12-TTF showed respective power conversion efficiencies (PCEs) of 2.86% and 1.67%. When 1,8-diiodooctane (DIO) was used as the solvent additive, the PCE of PBDT-T6-TTF was remarkably elevated to 4.85%, but the use of DIO for the PBDT-T12-TTF-blend film resulted in a lower PCE of 0.91%. Atomic force microscopy (AFM) indicated that the superior efficiency of PBDT-T6-TTF with 3% DIO (v/v) should be related to the better continuous phase separation of the blend film. Nevertheless, the morphology of the PBDT-T12-TTF deteriorated when the 3% DIO (v/v) was added. Our results suggest that the alkyl-chain length on the 2D BDT units play an important role in determining the optoelectronic properties of dual 2D BDT-TT-based polymers. 展开更多
关键词 conjugated copolymers BENZODITHIOPHENE thienothiophene dual 2-dimentional substitutions alkyl side-chain length
原文传递
Study of large area hydrogenated microcrystalline silicon p-layers for back surface field in crystalline silicon solar cells
11
作者 BAN Qun Martin HANKER +1 位作者 Dietmar BORCHERT SHEN Hui 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第1期63-69,共7页
A series of hydrogenated microcrystalline silicon (μc-Si:H) p-layers for back surface field in crystalline silicon solar cells were deposited on glass substrates by the developed large area (45 cm×45 cm) pl... A series of hydrogenated microcrystalline silicon (μc-Si:H) p-layers for back surface field in crystalline silicon solar cells were deposited on glass substrates by the developed large area (45 cm×45 cm) plasma enhanced chemical vapour deposition processor operating at 13.56 MHz and various values of source gas trimethylboron (TMB) to H2 flowratio. The influence of deposition parameters on the large area p-layer performance was intensively studied, as well as the thin film uniformity, optical, electrical and structural performances by Raman, PTIR, Ellipsometry, etc. Arrhenius and Tauc plots were used to discuss the μc-Si:H thin film's activation energy and the defects state distribution. When amorphous-microcrystalline transition state was obtained, the deposited p-doped μc-Si:H layers showed specific resistance of 38.3 Ω^-1cm1 at the flowratio of 0.66% and high crystallinity of 45%-50% with no further treatment. The effect of source gas flowratio, deposition rate, and source gas partial pressure on μc-Si:H thin film's performance was also investigated. 展开更多
关键词 μc-Si:H flowratio UNIFORMITY band structure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部