The microscopic and ultrastructural characteristics of mesophyll cells in flag leaves of two rice lines (a thermosensitive line 4628 and a thermo-resistant line 996) under high temperature stress (37℃ during 8:00...The microscopic and ultrastructural characteristics of mesophyll cells in flag leaves of two rice lines (a thermosensitive line 4628 and a thermo-resistant line 996) under high temperature stress (37℃ during 8:00-17:00 and 30℃ during 17:00-8:00) were investigated using an optical and a transmission electron microscopy. The membrane permeability and malondialdehyde content increased under the high temperature stress, and the increase of both variables was greater in the line 4628 than in the line 996. Under the high temperature stress, the line 996 showed tightly arranged mesophyll cells in flag leaves, fully developed vascular bundles and some closed stomata, whereas the line 4628 suffered from injury because of undeveloped vascular bundles, loosely arranged mesophyll cells and opened stomata. The mesophyll cells in flag leaves of the line 4628 were severely damaged under the high temperature stress, i.e. the chloroplast envelope became blurred, the grana thylakoid layer was arranged loosely and irregularly, the stroma layer disappeared, many osmiophilic granules appeared within the chloroplast, the outer membrane of mitochondria and the nucleus disintegrated and became blurred, the nucleolus disappeared, and much fibrillar-granular materials appeared within the nucleus. In contrast, the mesophyll cells in flag leaves of the line 996 maintained an intact ultrastructure under the high temperature stress. From these results, it is suggested that the ultrastructural modification of the cell membrane system is the primary plant response to high temperature stress and can be used as an index to evaluate the crop heat tolerance.展开更多
CO2 capture,especially under low-pressure range,is of significance to maintain long-duration human operation in confined spaces and decrease the CO2 corrosion and freezing effect for the liquefaction of natural gas.He...CO2 capture,especially under low-pressure range,is of significance to maintain long-duration human operation in confined spaces and decrease the CO2 corrosion and freezing effect for the liquefaction of natural gas.Herein,we for the first time report a novel anion-functionalized ZU-16-Co(TIFSIX-3-Co,TIFSIX=hexafluorotitanate(TiF62−),3=pyrazine),which exhibits one-dimensional pore channels decorated by abundant F atoms,for efficient CO2 capture at a concentration around 400–10,000 ppm.Among its isostructural MFSIX-3(M=Si,Ti,Ge)family materials,ZU-16-Co with fine-tuned pore size of 3.62Åexhibits the highest CO2 uptake at 0.01 bar(10,000 ppm)and 1 bar(2.63 and 2.87 mmol g−,respectively).The high CO2 capture ability of ZU-16-Co originates from the fine-tuned pore dimensions with strong F⋯C=O host-guest interactions and relatively large pore volumes coming from its longer coordinated Ti-F-Co distance(3.9Å)in c direction.The excellent carbon trapping performance was further verified by dynamic breakthrough tests for CO2/N2(1/99 and 15/85)and CO2/CH4(50/50)mixtures.The adsorption and separation performances,resulting from the fine-tuned pore system with periodic arrays of exposed functionalities,demonstrate that ultramicroporous ZU-16-Co can be a promising adsorbent for low-concentration carbon capture.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 30500315)the Agricultural Technological Results Transformation Item of Ministry of Agriculture, China (Grant No. 05EFN214300193)the Educational Foundation of Hunan Province, China (Grant No. 07C360)
文摘The microscopic and ultrastructural characteristics of mesophyll cells in flag leaves of two rice lines (a thermosensitive line 4628 and a thermo-resistant line 996) under high temperature stress (37℃ during 8:00-17:00 and 30℃ during 17:00-8:00) were investigated using an optical and a transmission electron microscopy. The membrane permeability and malondialdehyde content increased under the high temperature stress, and the increase of both variables was greater in the line 4628 than in the line 996. Under the high temperature stress, the line 996 showed tightly arranged mesophyll cells in flag leaves, fully developed vascular bundles and some closed stomata, whereas the line 4628 suffered from injury because of undeveloped vascular bundles, loosely arranged mesophyll cells and opened stomata. The mesophyll cells in flag leaves of the line 4628 were severely damaged under the high temperature stress, i.e. the chloroplast envelope became blurred, the grana thylakoid layer was arranged loosely and irregularly, the stroma layer disappeared, many osmiophilic granules appeared within the chloroplast, the outer membrane of mitochondria and the nucleus disintegrated and became blurred, the nucleolus disappeared, and much fibrillar-granular materials appeared within the nucleus. In contrast, the mesophyll cells in flag leaves of the line 996 maintained an intact ultrastructure under the high temperature stress. From these results, it is suggested that the ultrastructural modification of the cell membrane system is the primary plant response to high temperature stress and can be used as an index to evaluate the crop heat tolerance.
基金the National Natural Science Foundation of China(21938011,U1862110,21890764 and21725603)the National Program for Support of Top-notch Young Professionals(H.X.)。
文摘CO2 capture,especially under low-pressure range,is of significance to maintain long-duration human operation in confined spaces and decrease the CO2 corrosion and freezing effect for the liquefaction of natural gas.Herein,we for the first time report a novel anion-functionalized ZU-16-Co(TIFSIX-3-Co,TIFSIX=hexafluorotitanate(TiF62−),3=pyrazine),which exhibits one-dimensional pore channels decorated by abundant F atoms,for efficient CO2 capture at a concentration around 400–10,000 ppm.Among its isostructural MFSIX-3(M=Si,Ti,Ge)family materials,ZU-16-Co with fine-tuned pore size of 3.62Åexhibits the highest CO2 uptake at 0.01 bar(10,000 ppm)and 1 bar(2.63 and 2.87 mmol g−,respectively).The high CO2 capture ability of ZU-16-Co originates from the fine-tuned pore dimensions with strong F⋯C=O host-guest interactions and relatively large pore volumes coming from its longer coordinated Ti-F-Co distance(3.9Å)in c direction.The excellent carbon trapping performance was further verified by dynamic breakthrough tests for CO2/N2(1/99 and 15/85)and CO2/CH4(50/50)mixtures.The adsorption and separation performances,resulting from the fine-tuned pore system with periodic arrays of exposed functionalities,demonstrate that ultramicroporous ZU-16-Co can be a promising adsorbent for low-concentration carbon capture.