Endoreticulatus bombycis is a new pathogenic microspordia isolated from the silkworm larvae. With polymerase chain reaction (PCR) method,we amplified a fragment of the core sequence of the small subunit ribosomal RNA ...Endoreticulatus bombycis is a new pathogenic microspordia isolated from the silkworm larvae. With polymerase chain reaction (PCR) method,we amplified a fragment of the core sequence of the small subunit ribosomal RNA (SSUrRNA) of Endoreticulatus bombycis. The SSUrRNA fragment was inserted into pMD18-T Vector and then cloned. It had a length of 1 230 nucleotides and a percentage GC content of 51.3%. The accession number in GenBank is gi11181769|AY009115. The secondary structure model of the SSUrRNA of Endoreticulatus bombycis was constructed both on the bases of the sequence alignment and RNAFOLD program of the PC-GENE package. The secondary structure model revealed that Endoreticulatus bombycis lacked many eukaryotic helices, such as helix10, helix 11, helix 18, helix 43 and helix 46,but it has V4 region and has more of prokaryotic character. Analyzed by Blast, Endoreticulatus bombycis, Endoreticulatus schubergi and Pleistophora sp.(Sd-Nu-IW8201) have a high similarity, over 98%. Phylogeny tree of Endoreticulatus and Pleistophora species showed that Endoreticulatus and Pleistophora sp.(Sd-Nu-IW8201) was in a group and the other Pleistophora species were in another group .展开更多
[ Objective ] The aim of this study was to investigate the infectivity of Nosema bombycis to drosophila, which offered a new vision for systematical studies on the infection mechanism of Nosema bombycis, and also prov...[ Objective ] The aim of this study was to investigate the infectivity of Nosema bombycis to drosophila, which offered a new vision for systematical studies on the infection mechanism of Nosema bombycis, and also provided reference for the bio-control effect of Nosema bombycis. [ Method ] Nosema bombycis was used to feed wild type and mutant drosophila, and the morphological observation of Nosema bombycis in drosophila body fluid was also analyzed by calcofluor white M2R fluorescent staining. [ Result] Nosema bombycis could infect drosophila, and the number of Nosema bombycis in the infected mutant drosophila was higher than that in wild type drosophila. [ Conclusion ] Nosema bombycis can infect drosophila, which provides primary reference for studies on the infectivity of Nosema bombycis to other hosts and also lays a foundation for further study on the infection mechanism of Nosema bombycis.展开更多
Microsporidia are a group of intracelluar eukaryotic parasites, which can infected almost all animals, including human beings. Till now, no mitochodria but mitosome, a remnant of mitochondria was discovered in this ph...Microsporidia are a group of intracelluar eukaryotic parasites, which can infected almost all animals, including human beings. Till now, no mitochodria but mitosome, a remnant of mitochondria was discovered in this phylum. We present here the mitochondrial pyruvate dehydrogenase El (PDH, including PDHα and PDHβ) of the microsporidian Nosema bombycis, the pathogen of silkworm pebrine. Compared with PDH of microsporidian Encephalitozoon cuniculi and Antonospora locustae, both subunits are eonscrced. The phylogeny indicated that both subunits are mitochondrial. The syntenic maps revealed the subunits organization of NbPDH is distributed in different scaffolds, similar to that of EcPDH but different with AIPDH, and the relationship between phylogeny tree and organization of PDH suggest that the AlPDH subunits organization is the ancestral style of microsporidia, and through the genome evolution, the reshuffling of the chromosome of microsporidia occurred, the adjacent style of ALPDHE1 organization changed, and the two subunits separated and located to different chromosomes in E. cuniculi. For N. bombycis and N. ceranae, they locate to different scaffolds. In order to determine NbPDH subcellular localizations, we prepared the polyclonal antibodies against NbPDH prokaryotic fusion proteins, and adopted the colloidal gold immunological electron microscopy, the expression signals of NbPDH were observed in spores however, the subcellular localization were not definited. In general, through comparison of three mierosporidian PDH molecular phylogeny, subunits organization in chromosomes, localization indicated that PDH is an interesting marker in microsporidia evolution展开更多
20 localities were randomly selected in Eastern Black Sea Region of Turkey and samples were collected from around the beehives from April to September. Total of 4,640 dead adult worker bees were examined during the st...20 localities were randomly selected in Eastern Black Sea Region of Turkey and samples were collected from around the beehives from April to September. Total of 4,640 dead adult worker bees were examined during the study. Total infection rate in worker bees was 21.23%. Nosema ceranae was identified in all localities with molecular techniques. Temperature and humidity values were measured from around the beehives during field studies. The infection rate ofN. ceranae increased proportionally with increasing temperature and humidity factors. Humidity was more effective than temperature on the infection rate ofN. ceranae. The seasonal activity ofN. ceranae was studied. The highest infection rates were observed in June and July. N. ceranae infection rate was higher in localities that were in low-altitude than in localities that were in high-altitude.展开更多
Propolis collected by stingless bees from various types of plants has been used as an antimicrobial agent in several previous studies. We assessed the effect of propolis produced by a stingless bee, Trigona apicalis, ...Propolis collected by stingless bees from various types of plants has been used as an antimicrobial agent in several previous studies. We assessed the effect of propolis produced by a stingless bee, Trigona apicalis, on Apis florea experimentally infected with Nosema ceranae, a parasite of honeybees. For parasite inoculation each Nosema free-bee was fed 2μL of 50% (w/v) sucrose solution containing N. ceranae spores at 40,000 spores/bee and 0 as a negative control (CO). Treated bees were provided with 0%, 10%, 20% and 50% propolis (w/v) in water, defined as 0P, 10P, 20P and 50P, respectively. We assessed the effects of propolis 14 days post inoculation. All propolis-treated bees had significantly higher survival than untreated bees. However, survival of Nosema-inoculated bees was lower than that of control bees. Bees treated with the highest propolis concentration (50P) had the highest survival ratio. No control bees became infected over the course of the study. However, N. ceranae infection rates of bees treated with 0P, 10P, 20P and 50P were 75 ± 1.4%, 72 ± 5.6%, 69± 4.2% and 47± 1.4%, respectively. In addition, propolis-treated bees had hypopharyngeal gland protein content that was significantly higher than 0P and CO bees. Overall, propolis treatment significantly reduced N. ceranae infection rate and bee mortality and was associated with increased hypopharyngeal gland protein concentration.展开更多
文摘Endoreticulatus bombycis is a new pathogenic microspordia isolated from the silkworm larvae. With polymerase chain reaction (PCR) method,we amplified a fragment of the core sequence of the small subunit ribosomal RNA (SSUrRNA) of Endoreticulatus bombycis. The SSUrRNA fragment was inserted into pMD18-T Vector and then cloned. It had a length of 1 230 nucleotides and a percentage GC content of 51.3%. The accession number in GenBank is gi11181769|AY009115. The secondary structure model of the SSUrRNA of Endoreticulatus bombycis was constructed both on the bases of the sequence alignment and RNAFOLD program of the PC-GENE package. The secondary structure model revealed that Endoreticulatus bombycis lacked many eukaryotic helices, such as helix10, helix 11, helix 18, helix 43 and helix 46,but it has V4 region and has more of prokaryotic character. Analyzed by Blast, Endoreticulatus bombycis, Endoreticulatus schubergi and Pleistophora sp.(Sd-Nu-IW8201) have a high similarity, over 98%. Phylogeny tree of Endoreticulatus and Pleistophora species showed that Endoreticulatus and Pleistophora sp.(Sd-Nu-IW8201) was in a group and the other Pleistophora species were in another group .
基金Supported by Natural Science Foundation of Chongqing(2008BB1368)~~
文摘[ Objective ] The aim of this study was to investigate the infectivity of Nosema bombycis to drosophila, which offered a new vision for systematical studies on the infection mechanism of Nosema bombycis, and also provided reference for the bio-control effect of Nosema bombycis. [ Method ] Nosema bombycis was used to feed wild type and mutant drosophila, and the morphological observation of Nosema bombycis in drosophila body fluid was also analyzed by calcofluor white M2R fluorescent staining. [ Result] Nosema bombycis could infect drosophila, and the number of Nosema bombycis in the infected mutant drosophila was higher than that in wild type drosophila. [ Conclusion ] Nosema bombycis can infect drosophila, which provides primary reference for studies on the infectivity of Nosema bombycis to other hosts and also lays a foundation for further study on the infection mechanism of Nosema bombycis.
基金supported by the Project of Chongqing Science and Technology Commission(CSTC,2006AA5019)National Basic Research Program of China under the grant No.2005CB121000
文摘Microsporidia are a group of intracelluar eukaryotic parasites, which can infected almost all animals, including human beings. Till now, no mitochodria but mitosome, a remnant of mitochondria was discovered in this phylum. We present here the mitochondrial pyruvate dehydrogenase El (PDH, including PDHα and PDHβ) of the microsporidian Nosema bombycis, the pathogen of silkworm pebrine. Compared with PDH of microsporidian Encephalitozoon cuniculi and Antonospora locustae, both subunits are eonscrced. The phylogeny indicated that both subunits are mitochondrial. The syntenic maps revealed the subunits organization of NbPDH is distributed in different scaffolds, similar to that of EcPDH but different with AIPDH, and the relationship between phylogeny tree and organization of PDH suggest that the AlPDH subunits organization is the ancestral style of microsporidia, and through the genome evolution, the reshuffling of the chromosome of microsporidia occurred, the adjacent style of ALPDHE1 organization changed, and the two subunits separated and located to different chromosomes in E. cuniculi. For N. bombycis and N. ceranae, they locate to different scaffolds. In order to determine NbPDH subcellular localizations, we prepared the polyclonal antibodies against NbPDH prokaryotic fusion proteins, and adopted the colloidal gold immunological electron microscopy, the expression signals of NbPDH were observed in spores however, the subcellular localization were not definited. In general, through comparison of three mierosporidian PDH molecular phylogeny, subunits organization in chromosomes, localization indicated that PDH is an interesting marker in microsporidia evolution
文摘20 localities were randomly selected in Eastern Black Sea Region of Turkey and samples were collected from around the beehives from April to September. Total of 4,640 dead adult worker bees were examined during the study. Total infection rate in worker bees was 21.23%. Nosema ceranae was identified in all localities with molecular techniques. Temperature and humidity values were measured from around the beehives during field studies. The infection rate ofN. ceranae increased proportionally with increasing temperature and humidity factors. Humidity was more effective than temperature on the infection rate ofN. ceranae. The seasonal activity ofN. ceranae was studied. The highest infection rates were observed in June and July. N. ceranae infection rate was higher in localities that were in low-altitude than in localities that were in high-altitude.
文摘Propolis collected by stingless bees from various types of plants has been used as an antimicrobial agent in several previous studies. We assessed the effect of propolis produced by a stingless bee, Trigona apicalis, on Apis florea experimentally infected with Nosema ceranae, a parasite of honeybees. For parasite inoculation each Nosema free-bee was fed 2μL of 50% (w/v) sucrose solution containing N. ceranae spores at 40,000 spores/bee and 0 as a negative control (CO). Treated bees were provided with 0%, 10%, 20% and 50% propolis (w/v) in water, defined as 0P, 10P, 20P and 50P, respectively. We assessed the effects of propolis 14 days post inoculation. All propolis-treated bees had significantly higher survival than untreated bees. However, survival of Nosema-inoculated bees was lower than that of control bees. Bees treated with the highest propolis concentration (50P) had the highest survival ratio. No control bees became infected over the course of the study. However, N. ceranae infection rates of bees treated with 0P, 10P, 20P and 50P were 75 ± 1.4%, 72 ± 5.6%, 69± 4.2% and 47± 1.4%, respectively. In addition, propolis-treated bees had hypopharyngeal gland protein content that was significantly higher than 0P and CO bees. Overall, propolis treatment significantly reduced N. ceranae infection rate and bee mortality and was associated with increased hypopharyngeal gland protein concentration.