期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
利用平面激光诱导荧光技术及CH滤镜测量微喷管射流火焰OH及CH基元 被引量:7
1
作者 李星 蒋利桥 +2 位作者 杨浩林 张京 赵黛青 《光学精密工程》 EI CAS CSCD 北大核心 2017年第5期1119-1125,共7页
微射流火焰形貌观测及火焰中重要基元的准确测量,对利用微尺度火焰燃烧特性研制开发微型燃烧动力系统具有重要意义。本文建立了微喷管射流火焰实验及光学测量系统,对H_2和CH_4微射流火焰进行了实验研究,测量了两种重要基元(CH,OH)的空... 微射流火焰形貌观测及火焰中重要基元的准确测量,对利用微尺度火焰燃烧特性研制开发微型燃烧动力系统具有重要意义。本文建立了微喷管射流火焰实验及光学测量系统,对H_2和CH_4微射流火焰进行了实验研究,测量了两种重要基元(CH,OH)的空间分布。首先,探索了相机曝光时间对H_2微射流火焰成像的影响,得到了不同流速下H_2微射流火焰形貌的变化规律。其次,采用平面激光诱导荧光测量技术得到了不同燃料流速下H_2及CH_4微射流火焰中OH基元分布,同时还利用单反相机加CH滤镜通过长时间曝光(30s)的方法获得了CH_4微射流火焰中CH基元的分布。结果表明,火焰图像清晰度随曝光时间增加提高,曝光时间30s时可获得H_2微射流火焰的清晰照片;采用分辨率2 048×2 048的ICCD相机可获得微尺度火焰OH基元分布的清晰图像。微射流火焰形貌及重要基元的实验结果表明相关数值计算方法准确可靠。 展开更多
关键词 光学测量 激光光谱 平面激光诱导荧光 微射流火焰 OH CH
下载PDF
甲烷掺氢微管射流火焰燃烧极限的数值模拟 被引量:2
2
作者 侯彬 范爱武 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第12期4589-4601,共13页
以燃气灶火孔建立了微圆管射流火焰模型,探究了甲烷掺氢对稳燃极限的影响。首先,选用层流有限速率模型,改变燃气掺氢比和进气速度,通过ANSYS Fluent软件对其燃烧过程进行稳态仿真;然后,确定不同掺氢比下的稳定燃烧的进气速度区间,并从... 以燃气灶火孔建立了微圆管射流火焰模型,探究了甲烷掺氢对稳燃极限的影响。首先,选用层流有限速率模型,改变燃气掺氢比和进气速度,通过ANSYS Fluent软件对其燃烧过程进行稳态仿真;然后,确定不同掺氢比下的稳定燃烧的进气速度区间,并从化学反应和热循环效应2个方面对掺氢的影响进行分析。研究结果表明:随着掺氢比(β=0~25%)增加,吹熄极限显著提高,熄火极限略有降低,稳燃区间扩大;当量比保持不变时,甲烷掺氢后预混气中O_(2)的体积分数降低;接近熄火极限时,由于火焰位于管口,外界O_(2)不易被卷吸和扩散至火焰上游,反应速率降低;临近吹熄状态时,由于外部空间的O_(2)被卷吸和扩散至火焰内部,抵消了预混气中O_(2)含量差别带来的影响;甲烷掺氢后H自由基增加,燃烧速率升高,火焰更靠近微管,加强了火焰与管壁之间的传热,改善了微管内壁对未燃预混气的预热作用,且进气速度越低,预热效果越显著;热循环效应导致甲烷掺氢拓展了熄火极限,而吹熄极限提高则主要归因于掺氢促进了化学反应。 展开更多
关键词 掺氢燃烧 微射流火焰 燃烧极限 反应速率 热循环效应
下载PDF
微喷管甲烷非预混射流火焰燃烧特性实验研究 被引量:6
3
作者 李星 张京 +3 位作者 杨浩林 蒋利桥 汪小憨 赵黛青 《工程热物理学报》 EI CAS CSCD 北大核心 2016年第4期907-911,共5页
为发展微尺度燃烧器并拓展微尺度燃烧理论,对具有外部伴流空气的甲烷非预混微喷管射流火焰燃烧特性进行了实验研究。微喷管采用内径为710μm、425μm及280μm的不锈钢管,通过实验得到了微喷管非预混射流火焰的火焰形态、高度、最小熄灭... 为发展微尺度燃烧器并拓展微尺度燃烧理论,对具有外部伴流空气的甲烷非预混微喷管射流火焰燃烧特性进行了实验研究。微喷管采用内径为710μm、425μm及280μm的不锈钢管,通过实验得到了微喷管非预混射流火焰的火焰形态、高度、最小熄灭流速及吹熄极限,并与常规尺度(管内径2 mm)非预混射流火焰进行了对比。研究表明微喷管射流火焰只有层流火焰一种形态;微喷管射流火焰高度主要取决于燃料流速而不受外部伴流速度影响;微喷管射流火焰的吹熄极限随伴流速度先增加后减小,而微射流火焰的最小熄灭流速受伴流空气速度影响较小,随管径减小微喷管射流火焰的可燃范围急剧减小。 展开更多
关键词 喷管非预混射流火焰 火焰高度 熄灭极限 吹熄极限 可燃范围
原文传递
Flame Structure of a Jet Flame with Penetration of Side Micro-jets 被引量:3
4
作者 曹玉春 吴金星 +1 位作者 米建春 周钰 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第6期861-866,共6页
In this paper, an innovative jet lifted flame with side micro-jets has been proposed and its effects on the flame structure have also been investigated. Due to the changes of the initial combustion conditions, mixing ... In this paper, an innovative jet lifted flame with side micro-jets has been proposed and its effects on the flame structure have also been investigated. Due to the changes of the initial combustion conditions, mixing and aerodynamics which resulted from the perturbation of the side micro-jets, such a lifted jet flame has different flame structure compared with the common premixed flame. Results demonstrate that use of the micro-jets can control, to a certain extent, the flame structure, including the flame length, lift-off distance and blow-off limit. With the same fuel and air flow rate, the flame length with the side micro-jets will decrease about 5%-40% as the air volume ratio a increases from 58%-76%. Compared with the common diffusion flame, the jet flame with the side micro-jets demonstrates to be easier to be a momentum-dominated flame. The flame length with 2 micro-jets is about 5% less than with 6 micro-jets under the same fuel and air flow rate. With the same a, the fewer number of the controlled jets lead to the flame with relatively shorter length, not easier to be blown off and higher NOx emission. With certain fuel flow rate, the critical air volume ratio is largest for the flame with 3 micro-jets, which is more difficult to be blown off than the cases with 2, 4 or 6 micro-jets. 展开更多
关键词 jet flame side micro-jets PERTURBATION flame structure
下载PDF
A non-monotonic blow-off limit of micro-jet methane diffusion flame at different tube-wall thicknesses
5
作者 LI Dan LIU Bing +4 位作者 HUANG Long LIU Lei KE Wei-chang WAN Jian-long LIU Hao 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第6期1880-1890,共11页
In order to provide guideline for choosing a suitable tube-wall thickness(d)for the micro-jet methane diffusion flame,the effect of tube-wall thickness on the blow-off limit is investigated via numerical simulation in... In order to provide guideline for choosing a suitable tube-wall thickness(d)for the micro-jet methane diffusion flame,the effect of tube-wall thickness on the blow-off limit is investigated via numerical simulation in the present work.The results show that the blow-off limit of micro-jet methane diffusion flame firstly increases and then decreases with the increase of tube-wall thickness.Subsequently,the underlying mechanisms responsible for the above non-monotonic blow-off limit are discussed in terms of the flow filed,strain effect and conjugate heat exchange.The analysis indicates that the flow field is insignificant for the non-monotonic blow-off limit.A smaller strain effect can induce the increase of the blow-off limit fromd=0.1 to 0.2 mm,and a worse heat recirculation effect can induce the decrease of the blow-off limit fromd=0.2 to 0.4 mm.The non-monotonic blow-off limit is mainly determined by the heat loss of flame to the tube-wall and the performance of tube-wall on preheating unburned fuel.The smallest heat loss of flame to the tube-wall and the best performance of tube-wall on preheating unburned fuel result in the largest blow-off limit atd=0.2 mm.Therefore,a moderate tube-wall thickness is more suitable to manufacture the micro-jet burner. 展开更多
关键词 micro-jet diffusion flame blow-off limit flow field strain effect conjugate heat exchange
下载PDF
A numerical investigation in buoyancy effects on micro jet diffusion flame
6
作者 LIU Lei ZHAO Ming +2 位作者 CHEN Yi-kun FAN Ai-wu LI Dan 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第3期867-875,共9页
The buoyancy effect on micro hydrogen jet flames in still air was numerially studied.The results show that when the jet velocity is relatively large(V≥0.2 m/s),the flame height,width and temperature decrease,whereas ... The buoyancy effect on micro hydrogen jet flames in still air was numerially studied.The results show that when the jet velocity is relatively large(V≥0.2 m/s),the flame height,width and temperature decrease,whereas the peak OH mass fraction increases significantly under normal gravity(g=9.8 m/s^2).For a very low jet velocity(e.g.,V=0.1 m/s),both the peak OH mass fraction and flame temperature under g=9.8 m/s^2 are lower than the counterparts under g=0 m/s^2.Analysis reveals that when V≥0.2 m/s,fuel/air mixing will be promoted and combustion will be intensified due to radial flow caused by the buoyancy effect.However,the flame temperature will be slightly decreased owing to the large amount of entrainment of cold air into the reaction zone.For V=0.1 m/s,since the heat release rate is very low,the entrainment of cold air and fuel leakage from the rim of tube exit lead to a significant drop of flame temperature.Meanwhile,the heat loss rate from fuel to inner tube wall is larger under g=9.8 m/s^2 compared to that under g=0 m/s^2.Therefore,the buoyancy effect is overall negative at very low jet velocities. 展开更多
关键词 micro jet diffusion flame buoyancy effect flame structure flame temperature air entrainment preheating effect
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部