Micro-scale functionally graded material(FGM)pipes conveying fluid have many significant applications in engineering fields.In this work,the thermoelastic vibration of FGM fluid-conveying tubes in elastic medium is st...Micro-scale functionally graded material(FGM)pipes conveying fluid have many significant applications in engineering fields.In this work,the thermoelastic vibration of FGM fluid-conveying tubes in elastic medium is studied.Based on modified couple stress theory and Hamilton’s principle,the governing equation and boundary conditions are obtained.The differential quadrature method(DQM)is applied to investigating the thermoelastic vibration of the FGM pipes.The effect of temperature variation,scale effect of the microtubule,micro-fluid effect,material properties,elastic coefficient of elastic medium and outer radius on thermoelastic vibration of the FGM pipes conveying fluid are studied.The results show that in the condition of considering the scale effect and micro-fluid of the microtubule,the critical dimensionless velocity of the system is higher than that of the system which calculated using classical macroscopic model.The results also show that the variations of temperature,material properties,elastic coefficient and outer radius have significant influences on the first-order dimensionless natural frequency.展开更多
Advanced microfluidic technology was used to examine the microscopic viscous and inertial effects evolution of water flow in rock joints. The influence of void space on fluid flow behaviour in rock joints under differ...Advanced microfluidic technology was used to examine the microscopic viscous and inertial effects evolution of water flow in rock joints. The influence of void space on fluid flow behaviour in rock joints under different flow velocities was experimentally investigated at the micro scale. Using advanced fabrication technology of microfluidic device, micro flow channels of semicircular, triangular, rectangular and pentagonal cavities were fabricated to simulate different void space of rock joints, respectively. Using the fluorescence labelling approach, the trajectory of water flow was captured by the microscope digital camera when it passed over the cavity under different flow velocities. The flow tests show that the flow trajectory deviated towards the inside of the cavity at low flow velocities. With the increase in flow velocity, this degree of flow trajectory deviation decreased until there was no trajectory deviation for flow in the straight parallel channel. The flow trajectory deviation initially reduced from the void corner near the entrance. At the same time, a small eddy appeared near the void corner of the entrance. The size and intensity of the eddy increased with the flow velocity until it occupied the whole cavity domain. The gradual reduction of flow trajectory near the straight parallel channel and the growth of eddy inside the cavity reflect the evolution of microscopic viscous and inertial forces under different flow velocities.The eddy formed inside the cavity does not contribute to the total flow flux, but the running of the eddy consumes flow energy. This amount of pressure loss due to voids could contribute to the nonlinear deviation of fracture fluid flow from Darcy's law. This study contributes to the fundamental understanding of non-Darcy's flow occurrence in rock joints at the micro scale.展开更多
Microstructure and hydrological profiles were collected along two cross-shelf sections from the deep slope to the shallow water in the north of Taiwan Island in the summer of 2006.While the tidal currents on the shelf...Microstructure and hydrological profiles were collected along two cross-shelf sections from the deep slope to the shallow water in the north of Taiwan Island in the summer of 2006.While the tidal currents on the shelf were dominated by the barotropic tide with the current ellipse stretched across the shelf,significant internal tides were observed on the slope.The depth-mean turbulent kinetic energy(TKE)dissipation rate on the shelf was 10^-6W kg^-1,corresponding to a diapycnal diffusivity of 10^-2 m^2s^-1.The depth-mean TKE dissipation rate on the slope was 1×10^-7 Wkg^-1,with diapycnal diffusivity of 3×10^-4m^2s^-1.The shear instability associated with internal tides largely contributed to the TKE dissipation rate on the slope from the surface to 150 m,while the enhanced turbulence on the shelf was dominated by tidal or residual current dissipations caused by friction in the thick bottom boundary layer(BBL).In the BBL,the Ekman currents associated with the northeastward Taiwan Warm Current were identified,showing a near-bottom velocity spiral,which agreed well with the analytical bottom Ekman solution.展开更多
A cloud-scale WRF simulation was used to investigate the cloud microphysical processes and threedimensional structure of latent heat budgets in different stages of a mesoscale convective system(MCS) accompanied by h...A cloud-scale WRF simulation was used to investigate the cloud microphysical processes and threedimensional structure of latent heat budgets in different stages of a mesoscale convective system(MCS) accompanied by heavy rain that occurred in the Guangzhou region of South China.The results enable us to draw the following conclusions:(1) During the development and mature stages,the main heating processes were condensation below 400 hPa and deposition above 400 hPa.The main cooling processes were evaporation and melting.During the dissipation stage,all the microphysical processes were weak.(2) Water vapor condensed into cloud water,and rainwater significantly contributed to all stages of the MCS.(3) During every stage of the MCS,the primary cooling microphysical process was the evaporation of rainwater,which was maximum during the mature stage.展开更多
A two-dimensional molecular dynamics (2DMD) simulation is applied to gaseous microflows. Based on a velocity distribution function in equilibrium, the mean molecular speed, mean collision frequency, mean free path, an...A two-dimensional molecular dynamics (2DMD) simulation is applied to gaseous microflows. Based on a velocity distribution function in equilibrium, the mean molecular speed, mean collision frequency, mean free path, and the dynamical viscosity are deduced theoretically. A Maxwell-type-like boundary condition for two-dimensional (2D) systems, which reveals a linear relationship between the slip length and the mean free path, is also derived. These expressions are consequently employed to investigate the rarefied gas flow in a submicron channel. The results show reasonable agreements with those by 3D simulations, and indicate that the 2DMD scheme can be very promising for the microflow researches because of its high efficiency in computation.展开更多
A 300 μm×300 μm light emitting diode(LED) chip is divided into nine 80 μm×80 μm units with 30 μm spacing between adjacent ones. After arraying, the total saturation light output power and the maximum in...A 300 μm×300 μm light emitting diode(LED) chip is divided into nine 80 μm×80 μm units with 30 μm spacing between adjacent ones. After arraying, the total saturation light output power and the maximum injection current are enhanced by 5.19 times and nearly 7 times, respectively. In addition, the test results demonstrate that the illuminance uniformity on the receiving surface reaches the optimum when the spacing between the arrays is equal to the maximum flat condition. The larger the number of arrays, the greater the area with uniform illuminance on the receiving surface.展开更多
A convective assembly technique at the micron scale analogous to the writing action of a "pipette pen" has been developed for the linear assembly of gold nanoparticle strips with micron scale width and millimeter sc...A convective assembly technique at the micron scale analogous to the writing action of a "pipette pen" has been developed for the linear assembly of gold nanoparticle strips with micron scale width and millimeter scale length for surface enhanced Raman scattering (SERS). The arrays with interparticle gaps smaller than 3 nm are hexagonally stacked in the vicinity of the pipette tip. Variable numbers of stacked layers and clean surfaces of the assembled nanoparticles are obtained by optimizing the velocity of the pipette tip. The SERS properties of tile assembled nanoparticle arrays rely on their stacking number and surface cleanliness.展开更多
This paper presents a novel micro fabrication method based on the laminar characteristics of micro-scale flows. Therein the separator and etchant are alternatively arranged in micro channels to form multiple laminar s...This paper presents a novel micro fabrication method based on the laminar characteristics of micro-scale flows. Therein the separator and etchant are alternatively arranged in micro channels to form multiple laminar streams, and the etchant is located at the site where the reaction is supposed to occur. This new micro fabrication process can be used for the high aspect ratio etching inside a microchannel on glass substrates. Furthermore, the topography of microstructure patterned by this method can be controlled by changing the flow parameters of the separator and etchant. Experiments on the effects of flow parameters on the aspect ratio, side wall profile and etching rate were carried out on a glass substrate. The effect of flow rates on the etching rate and the micro topography was analyzed. In addition, experiments with dynamical changes of the flow rate ratio of the separator and etchant showed that the verticality of the side walls of microstructures can be significantly improved. The restricted flowing etching technique not only abates the isotropic effect in the traditional wet etching but also significantly reduces the dependence on expensive photolithographic equipment.展开更多
文摘Micro-scale functionally graded material(FGM)pipes conveying fluid have many significant applications in engineering fields.In this work,the thermoelastic vibration of FGM fluid-conveying tubes in elastic medium is studied.Based on modified couple stress theory and Hamilton’s principle,the governing equation and boundary conditions are obtained.The differential quadrature method(DQM)is applied to investigating the thermoelastic vibration of the FGM pipes.The effect of temperature variation,scale effect of the microtubule,micro-fluid effect,material properties,elastic coefficient of elastic medium and outer radius on thermoelastic vibration of the FGM pipes conveying fluid are studied.The results show that in the condition of considering the scale effect and micro-fluid of the microtubule,the critical dimensionless velocity of the system is higher than that of the system which calculated using classical macroscopic model.The results also show that the variations of temperature,material properties,elastic coefficient and outer radius have significant influences on the first-order dimensionless natural frequency.
基金support from the Australian Research Council-linkage Project
文摘Advanced microfluidic technology was used to examine the microscopic viscous and inertial effects evolution of water flow in rock joints. The influence of void space on fluid flow behaviour in rock joints under different flow velocities was experimentally investigated at the micro scale. Using advanced fabrication technology of microfluidic device, micro flow channels of semicircular, triangular, rectangular and pentagonal cavities were fabricated to simulate different void space of rock joints, respectively. Using the fluorescence labelling approach, the trajectory of water flow was captured by the microscope digital camera when it passed over the cavity under different flow velocities. The flow tests show that the flow trajectory deviated towards the inside of the cavity at low flow velocities. With the increase in flow velocity, this degree of flow trajectory deviation decreased until there was no trajectory deviation for flow in the straight parallel channel. The flow trajectory deviation initially reduced from the void corner near the entrance. At the same time, a small eddy appeared near the void corner of the entrance. The size and intensity of the eddy increased with the flow velocity until it occupied the whole cavity domain. The gradual reduction of flow trajectory near the straight parallel channel and the growth of eddy inside the cavity reflect the evolution of microscopic viscous and inertial forces under different flow velocities.The eddy formed inside the cavity does not contribute to the total flow flux, but the running of the eddy consumes flow energy. This amount of pressure loss due to voids could contribute to the nonlinear deviation of fracture fluid flow from Darcy's law. This study contributes to the fundamental understanding of non-Darcy's flow occurrence in rock joints at the micro scale.
基金sponsored by the National Basic Research Program of China (Ministry of Science and Technology)granted by the National Natural Science Foundation of China (Grant Nos. 41306003 and 41430963)+2 种基金the Fundamental Research Funds for the Central Universities (Grant Nos. 0905-841313038, 1100841262028 and 0905-201462003)the China Postdoctoral Science Foundation (Grant No. 2013M531647)the Natural Science Foundation of Shandong (Grant No. BS2013HZ015)
文摘Microstructure and hydrological profiles were collected along two cross-shelf sections from the deep slope to the shallow water in the north of Taiwan Island in the summer of 2006.While the tidal currents on the shelf were dominated by the barotropic tide with the current ellipse stretched across the shelf,significant internal tides were observed on the slope.The depth-mean turbulent kinetic energy(TKE)dissipation rate on the shelf was 10^-6W kg^-1,corresponding to a diapycnal diffusivity of 10^-2 m^2s^-1.The depth-mean TKE dissipation rate on the slope was 1×10^-7 Wkg^-1,with diapycnal diffusivity of 3×10^-4m^2s^-1.The shear instability associated with internal tides largely contributed to the TKE dissipation rate on the slope from the surface to 150 m,while the enhanced turbulence on the shelf was dominated by tidal or residual current dissipations caused by friction in the thick bottom boundary layer(BBL).In the BBL,the Ekman currents associated with the northeastward Taiwan Warm Current were identified,showing a near-bottom velocity spiral,which agreed well with the analytical bottom Ekman solution.
基金funded by the National Natural Science Foundation of China[grant number 41275060]the State Key Laboratory of Severe Weather Foundation of Chinese Academy of Meteorological SciencesThe National Key Research and Development Program of China[grant number 2016YFA0602701]
文摘A cloud-scale WRF simulation was used to investigate the cloud microphysical processes and threedimensional structure of latent heat budgets in different stages of a mesoscale convective system(MCS) accompanied by heavy rain that occurred in the Guangzhou region of South China.The results enable us to draw the following conclusions:(1) During the development and mature stages,the main heating processes were condensation below 400 hPa and deposition above 400 hPa.The main cooling processes were evaporation and melting.During the dissipation stage,all the microphysical processes were weak.(2) Water vapor condensed into cloud water,and rainwater significantly contributed to all stages of the MCS.(3) During every stage of the MCS,the primary cooling microphysical process was the evaporation of rainwater,which was maximum during the mature stage.
文摘A two-dimensional molecular dynamics (2DMD) simulation is applied to gaseous microflows. Based on a velocity distribution function in equilibrium, the mean molecular speed, mean collision frequency, mean free path, and the dynamical viscosity are deduced theoretically. A Maxwell-type-like boundary condition for two-dimensional (2D) systems, which reveals a linear relationship between the slip length and the mean free path, is also derived. These expressions are consequently employed to investigate the rarefied gas flow in a submicron channel. The results show reasonable agreements with those by 3D simulations, and indicate that the 2DMD scheme can be very promising for the microflow researches because of its high efficiency in computation.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(No.61204055)
文摘A 300 μm×300 μm light emitting diode(LED) chip is divided into nine 80 μm×80 μm units with 30 μm spacing between adjacent ones. After arraying, the total saturation light output power and the maximum injection current are enhanced by 5.19 times and nearly 7 times, respectively. In addition, the test results demonstrate that the illuminance uniformity on the receiving surface reaches the optimum when the spacing between the arrays is equal to the maximum flat condition. The larger the number of arrays, the greater the area with uniform illuminance on the receiving surface.
文摘A convective assembly technique at the micron scale analogous to the writing action of a "pipette pen" has been developed for the linear assembly of gold nanoparticle strips with micron scale width and millimeter scale length for surface enhanced Raman scattering (SERS). The arrays with interparticle gaps smaller than 3 nm are hexagonally stacked in the vicinity of the pipette tip. Variable numbers of stacked layers and clean surfaces of the assembled nanoparticles are obtained by optimizing the velocity of the pipette tip. The SERS properties of tile assembled nanoparticle arrays rely on their stacking number and surface cleanliness.
基金Project (No. 50705081) supported by the National Natural Science Foundation of China
文摘This paper presents a novel micro fabrication method based on the laminar characteristics of micro-scale flows. Therein the separator and etchant are alternatively arranged in micro channels to form multiple laminar streams, and the etchant is located at the site where the reaction is supposed to occur. This new micro fabrication process can be used for the high aspect ratio etching inside a microchannel on glass substrates. Furthermore, the topography of microstructure patterned by this method can be controlled by changing the flow parameters of the separator and etchant. Experiments on the effects of flow parameters on the aspect ratio, side wall profile and etching rate were carried out on a glass substrate. The effect of flow rates on the etching rate and the micro topography was analyzed. In addition, experiments with dynamical changes of the flow rate ratio of the separator and etchant showed that the verticality of the side walls of microstructures can be significantly improved. The restricted flowing etching technique not only abates the isotropic effect in the traditional wet etching but also significantly reduces the dependence on expensive photolithographic equipment.