A P-vector method was optimized using variational data assimilation technique, with which the vertical structures and seasonal variations of zonal velocities and transports were investigated. The results showed that w...A P-vector method was optimized using variational data assimilation technique, with which the vertical structures and seasonal variations of zonal velocities and transports were investigated. The results showed that westward and eastward flowes occur in the Luzon Strait in the same period in a year. However the net volume transport is westward. In the upper level (0m -500m),the westward flow exits in the middle and south of the Luzon Strait, and the eastward flow exits in the north. There are two centers of westward flow and one center of eastward flow. In the middle of the Luzon Strait, westward and eastward flowes appear alternately in vertical direction. The westward flow strengthens in winter and weakens in summer. The net volume transport is strong in winter (5.53 Sv) but weak in summer (0.29 Sv). Except in summer, the volume transport in the upper level accounts for more than half of the total volume transport (0m bottom). In summer, the net volume transport in the upper level is eastward (1.01 Sv), but westward underneath.展开更多
The ideally straight hydraulic pipe is inexistent in reality. The initial curve caused by the manufacturing or the creep deformation during the service life will change the dynamic character of the system. The current...The ideally straight hydraulic pipe is inexistent in reality. The initial curve caused by the manufacturing or the creep deformation during the service life will change the dynamic character of the system. The current work discusses the effect of the initial curve on the hydraulic pipe fixed at two ends for the first time. Based on the governing equation obtained via the generalized Hamilton’s principle,the potential energy changing with the height of the initial curve is discussed. The initial curve makes the potential energy curve asymmetric,but the system is always monostable. The initial curve also has very important influence on natural frequencies. It hardens the stiffness of the first natural mode at first and then has no effect on this mode after a critical value. On the contrast,the second natural frequency is constant before the critical value but increases while the height of the initial curve exceeds the critical value. On account of the initial value,the quadratic nonlinearity appears in the system. Forced resonance is very different from that of the ideally straight pipe under the same condition. Although the 2∶1 internal resonance is established by adjusting the height of the initial curve and the fluid speed,the typical double-jumping phenomenon does not occur under the initial curve given in the current work. This is very different from the straight pipe in the supercritical region. The work here claims that the initial curve of the hydraulic pipe should be taken into consideration. Besides,more arduous work is needed to reveal the dynamic characters of it.展开更多
In this paper, the variation of contact angles of a droplet on grooved surfaces was studied from microscale to macroscale experimentally and theoretically. The experimental results indicated that the contact angle cha...In this paper, the variation of contact angles of a droplet on grooved surfaces was studied from microscale to macroscale experimentally and theoretically. The experimental results indicated that the contact angle changes nonlinearly with anisotropic factor. To get clear of the changing process of contact angle on grooved surfaces from microscale to macroscale, we carried out theoretical analysis with moment equilibrium method being adopted. In addition, the variation of contact angles in different directions was investigated and a mathematic model to calculate arbitrary contact angles around the elliptic contact line was suggested. For the convenience of potential applications, a symbolic contact angle was proposed to characterize the ellipsoidal cap droplet on grooved surfaces. Our results will offer help to the future design of patterned surfaces in practical applications,and deepen the understanding of wetting behavior on grooved surfaces.展开更多
Nonlinear vibration with axisymmetric 3:1 internal resonance is investigated for an incompressible neo-Hookean hyperelastic cylindrical shell under both axial and radial harmonic excitations.A full nonlinear strain-di...Nonlinear vibration with axisymmetric 3:1 internal resonance is investigated for an incompressible neo-Hookean hyperelastic cylindrical shell under both axial and radial harmonic excitations.A full nonlinear strain-displacement relation is derived from the large deflection theory of thin-walled shells.A set of nonlinear differential equations describing the large deflection vibration are formulated by the Lagrange equation and the assumption of small strains.Steady-state responses of the system are predicted via the harmonic balance method with the arc length continuation,and their stabilities are determined via the modified sorting method.The effects of excitations on the steady-state responses are analyzed.The results reveal a crucial role played by the phase difference in the structural response,and the phase difference can effectively control the amplitude of vibration.展开更多
基金Supported by the Major State Basic Research Program (No. G1999043810) Open Laboratory for Tropical Marine Environmental Dynamics (LED)+2 种基金 South China Sea Institute of Oceanology Chinese Academy of Sciences and the NSFC (No. 40306004).
文摘A P-vector method was optimized using variational data assimilation technique, with which the vertical structures and seasonal variations of zonal velocities and transports were investigated. The results showed that westward and eastward flowes occur in the Luzon Strait in the same period in a year. However the net volume transport is westward. In the upper level (0m -500m),the westward flow exits in the middle and south of the Luzon Strait, and the eastward flow exits in the north. There are two centers of westward flow and one center of eastward flow. In the middle of the Luzon Strait, westward and eastward flowes appear alternately in vertical direction. The westward flow strengthens in winter and weakens in summer. The net volume transport is strong in winter (5.53 Sv) but weak in summer (0.29 Sv). Except in summer, the volume transport in the upper level accounts for more than half of the total volume transport (0m bottom). In summer, the net volume transport in the upper level is eastward (1.01 Sv), but westward underneath.
基金supported by the National Natural Science Foundation of China(No.12002195)the National Science Fund for Distinguished Young Scholars (No.12025204)+1 种基金the Program of Shanghai Municipal Education Commission (No. 2019-01-07-00-09-E00018)the Pujiang Project of Shanghai Science and Technology Commission(No.20PJ1404000)。
文摘The ideally straight hydraulic pipe is inexistent in reality. The initial curve caused by the manufacturing or the creep deformation during the service life will change the dynamic character of the system. The current work discusses the effect of the initial curve on the hydraulic pipe fixed at two ends for the first time. Based on the governing equation obtained via the generalized Hamilton’s principle,the potential energy changing with the height of the initial curve is discussed. The initial curve makes the potential energy curve asymmetric,but the system is always monostable. The initial curve also has very important influence on natural frequencies. It hardens the stiffness of the first natural mode at first and then has no effect on this mode after a critical value. On the contrast,the second natural frequency is constant before the critical value but increases while the height of the initial curve exceeds the critical value. On account of the initial value,the quadratic nonlinearity appears in the system. Forced resonance is very different from that of the ideally straight pipe under the same condition. Although the 2∶1 internal resonance is established by adjusting the height of the initial curve and the fluid speed,the typical double-jumping phenomenon does not occur under the initial curve given in the current work. This is very different from the straight pipe in the supercritical region. The work here claims that the initial curve of the hydraulic pipe should be taken into consideration. Besides,more arduous work is needed to reveal the dynamic characters of it.
基金supported by the National Natural Science Foundation of China(Grant Nos.U1562105,11611130019 and 11372313)the Chinese Academy of Sciences(CAS)through CAS Interdisciplinary Innovation Team Project+1 种基金the CAS Key Research Program of Frontier Sciences(Grant No.QYZDJ-SSW-JSC019)the CAS Strategic Priority Research Program(Grant No.XDB22040401)
文摘In this paper, the variation of contact angles of a droplet on grooved surfaces was studied from microscale to macroscale experimentally and theoretically. The experimental results indicated that the contact angle changes nonlinearly with anisotropic factor. To get clear of the changing process of contact angle on grooved surfaces from microscale to macroscale, we carried out theoretical analysis with moment equilibrium method being adopted. In addition, the variation of contact angles in different directions was investigated and a mathematic model to calculate arbitrary contact angles around the elliptic contact line was suggested. For the convenience of potential applications, a symbolic contact angle was proposed to characterize the ellipsoidal cap droplet on grooved surfaces. Our results will offer help to the future design of patterned surfaces in practical applications,and deepen the understanding of wetting behavior on grooved surfaces.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11672069,11872145,11872159,12172086,and 12101106).
文摘Nonlinear vibration with axisymmetric 3:1 internal resonance is investigated for an incompressible neo-Hookean hyperelastic cylindrical shell under both axial and radial harmonic excitations.A full nonlinear strain-displacement relation is derived from the large deflection theory of thin-walled shells.A set of nonlinear differential equations describing the large deflection vibration are formulated by the Lagrange equation and the assumption of small strains.Steady-state responses of the system are predicted via the harmonic balance method with the arc length continuation,and their stabilities are determined via the modified sorting method.The effects of excitations on the steady-state responses are analyzed.The results reveal a crucial role played by the phase difference in the structural response,and the phase difference can effectively control the amplitude of vibration.