Crystal plasticity theory was used to simulate upsetting tests of different dimensions and grain size micro copper cylinders in this study on the fluctuant flow stress scale effect. Results showed that with the decrea...Crystal plasticity theory was used to simulate upsetting tests of different dimensions and grain size micro copper cylinders in this study on the fluctuant flow stress scale effect. Results showed that with the decrease of billet grain quantity, flow stress fluctuation is not always increased, but there is a maximum. Through this study, the fluctuant flow stress scale effect can be understood deeper, and relevant necessary information was obtained for further prediction and control of this scale effect and to design the microforming process and die.展开更多
Rock mass large deformation in underground powerhouse caverns has been a severe hazard in hydropower engineering in Southwest China.During the development of rock mass large deformation,a sequence of fractures was gen...Rock mass large deformation in underground powerhouse caverns has been a severe hazard in hydropower engineering in Southwest China.During the development of rock mass large deformation,a sequence of fractures was generated that can be monitored using microseismic(MS)monitoring techniques.Two MS monitoring systems were established in two typical underground powerhouse caverns featuring distinct geostress levels.The MS b-values associated with rock mass large deformation and their temporal variation are analysed.The results showed that the MS bvalue in course of rock mass deformation was less than 1.0 in the underground powerhouse caverns at a high stress level while larger than 1.5 at a low stress level.Prior to the rock mass deformation,the MS b-values derived from both the high-stress and low-stress underground powerhouse caverns show an incremental decrease over 10%within 10 d.The results contribute to understanding the fracturing characteristics of MS sources associated with rock mass large deformation and provide a reference for early warning of rock mass large deformation in underground powerhouse caverns.展开更多
文摘Crystal plasticity theory was used to simulate upsetting tests of different dimensions and grain size micro copper cylinders in this study on the fluctuant flow stress scale effect. Results showed that with the decrease of billet grain quantity, flow stress fluctuation is not always increased, but there is a maximum. Through this study, the fluctuant flow stress scale effect can be understood deeper, and relevant necessary information was obtained for further prediction and control of this scale effect and to design the microforming process and die.
基金Projects(51809221,51679158)supported by the National Natural Science Foundation of ChinaProject(KFJJ20-06M)supported by the State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology),China。
文摘Rock mass large deformation in underground powerhouse caverns has been a severe hazard in hydropower engineering in Southwest China.During the development of rock mass large deformation,a sequence of fractures was generated that can be monitored using microseismic(MS)monitoring techniques.Two MS monitoring systems were established in two typical underground powerhouse caverns featuring distinct geostress levels.The MS b-values associated with rock mass large deformation and their temporal variation are analysed.The results showed that the MS bvalue in course of rock mass deformation was less than 1.0 in the underground powerhouse caverns at a high stress level while larger than 1.5 at a low stress level.Prior to the rock mass deformation,the MS b-values derived from both the high-stress and low-stress underground powerhouse caverns show an incremental decrease over 10%within 10 d.The results contribute to understanding the fracturing characteristics of MS sources associated with rock mass large deformation and provide a reference for early warning of rock mass large deformation in underground powerhouse caverns.