基于CONVERGE建立了高压直喷(high-pressure direct injection,HPDI)天然气低速船机三维仿真模型,并基于该模型研究了米勒循环和废气再循环(exhaust gas recirculation,EGR)对发动机燃烧特性及污染物排放的影响规律,探究了米勒循环耦合...基于CONVERGE建立了高压直喷(high-pressure direct injection,HPDI)天然气低速船机三维仿真模型,并基于该模型研究了米勒循环和废气再循环(exhaust gas recirculation,EGR)对发动机燃烧特性及污染物排放的影响规律,探究了米勒循环耦合EGR路线满足TierⅢ排放法规的可行性。研究结果表明,单独使用30%EGR率可满足TierⅢ排放标准,但指示油耗和碳烟排放增加显著;应用米勒循环降低NO x排放的潜力低于EGR;过大的排气门晚关角度会增大压气机工作负荷,且降低等量NO x排放情况下油耗牺牲较大;采用25%EGR率耦合小程度米勒循环(排气门关闭时刻推迟5°曲轴转角)并适当提前天然气喷射正时(提前2°曲轴转角),可在指示油耗仅增加1.58%的前提下降低77%的NO x排放,是满足TierⅢ排放法规可行的技术路线。展开更多
A successful design, previously adapted for treatment of complex wastewaters in a microbial fuel cell (MFC), was used to fabricate two MFCs, with a few changes for cost reduction and ease of construction. Performanc...A successful design, previously adapted for treatment of complex wastewaters in a microbial fuel cell (MFC), was used to fabricate two MFCs, with a few changes for cost reduction and ease of construction. Performance and electrochemical characteristics of MFCs were evaluated in different environmental conditions (in complete darkness and presence of light), and different flow patterns of batch and continuous in four hydraulic retention times from 8 to 30 h. Changes in chemical oxygen demand, and nitrate and phosphate concentrations were evaluated. In contrast to the microbial fuel cell operated in darkness (D-MFC) with a stable open circuit voltage of 700 mV, presence of light led to growth of other species, and consecutively low and unsteady open circuit voltage. Although the performance of the MFC subjected to light (L-MFC) was quite low and unsteady in dynamic state (internal resistance = 100 Ω, power density = 5.15 W.m-3). it reached power density of 9.2 W.m-3 which was close to performance of D-MFC (internal resistance = 50 d, power density = 10.3 W.m-3). Evaluated only for D-MFC, the coulombic efficiency observed in batch mode (30%) was quite higher than the maximum acquired in continuous mode (9.6%) even at the highest hydraulic retention time. In this study, changes in phosphate and different types of nitrogen existing in dairy wastewater were investigated for the first time. At hydraulic retention time of 8 h, the orthophosphate concentration in effluent was 84% higher compared to influent. Total nitrogen and total Kjeldahl nitrogen were reduced 70% and 99% respectively at hydraulic retention time of 30 h, while nitrate and nitrite concentrations increased. The microbial electrolysis cell (MEC), revamped from D-MEC, showed the maximum gas production of 0.2 m3 H2·m-3·d-1 at 700 mV applied voltage.展开更多
文摘基于CONVERGE建立了高压直喷(high-pressure direct injection,HPDI)天然气低速船机三维仿真模型,并基于该模型研究了米勒循环和废气再循环(exhaust gas recirculation,EGR)对发动机燃烧特性及污染物排放的影响规律,探究了米勒循环耦合EGR路线满足TierⅢ排放法规的可行性。研究结果表明,单独使用30%EGR率可满足TierⅢ排放标准,但指示油耗和碳烟排放增加显著;应用米勒循环降低NO x排放的潜力低于EGR;过大的排气门晚关角度会增大压气机工作负荷,且降低等量NO x排放情况下油耗牺牲较大;采用25%EGR率耦合小程度米勒循环(排气门关闭时刻推迟5°曲轴转角)并适当提前天然气喷射正时(提前2°曲轴转角),可在指示油耗仅增加1.58%的前提下降低77%的NO x排放,是满足TierⅢ排放法规可行的技术路线。
基金supported by Sharif University of Technology,Vice President for Research Grant G930111
文摘A successful design, previously adapted for treatment of complex wastewaters in a microbial fuel cell (MFC), was used to fabricate two MFCs, with a few changes for cost reduction and ease of construction. Performance and electrochemical characteristics of MFCs were evaluated in different environmental conditions (in complete darkness and presence of light), and different flow patterns of batch and continuous in four hydraulic retention times from 8 to 30 h. Changes in chemical oxygen demand, and nitrate and phosphate concentrations were evaluated. In contrast to the microbial fuel cell operated in darkness (D-MFC) with a stable open circuit voltage of 700 mV, presence of light led to growth of other species, and consecutively low and unsteady open circuit voltage. Although the performance of the MFC subjected to light (L-MFC) was quite low and unsteady in dynamic state (internal resistance = 100 Ω, power density = 5.15 W.m-3). it reached power density of 9.2 W.m-3 which was close to performance of D-MFC (internal resistance = 50 d, power density = 10.3 W.m-3). Evaluated only for D-MFC, the coulombic efficiency observed in batch mode (30%) was quite higher than the maximum acquired in continuous mode (9.6%) even at the highest hydraulic retention time. In this study, changes in phosphate and different types of nitrogen existing in dairy wastewater were investigated for the first time. At hydraulic retention time of 8 h, the orthophosphate concentration in effluent was 84% higher compared to influent. Total nitrogen and total Kjeldahl nitrogen were reduced 70% and 99% respectively at hydraulic retention time of 30 h, while nitrate and nitrite concentrations increased. The microbial electrolysis cell (MEC), revamped from D-MEC, showed the maximum gas production of 0.2 m3 H2·m-3·d-1 at 700 mV applied voltage.