给出了一种用于非制冷光学读出红外探测器的核心器件———双材料微悬臂梁阵列的设计和制作.微梁阵列是无硅基底的S iNx/Au双材料单层膜结构,其制作工艺简单、可以直接放在空气中成像.实验使用了设计制作的140×98微梁阵列和高信噪...给出了一种用于非制冷光学读出红外探测器的核心器件———双材料微悬臂梁阵列的设计和制作.微梁阵列是无硅基底的S iNx/Au双材料单层膜结构,其制作工艺简单、可以直接放在空气中成像.实验使用了设计制作的140×98微梁阵列和高信噪比的12-b it CCD,得到120℃以上的物体热像,噪声等效温度差(NETD)为7K左右,实验结果与热机械模型预测结果一致.展开更多
Array sensing is increasingly important in the development of microcantilever(MC) sensors, and response consistency is the foundation for MC array sensing. In the present work, we investigated the response consistency...Array sensing is increasingly important in the development of microcantilever(MC) sensors, and response consistency is the foundation for MC array sensing. In the present work, we investigated the response consistency of MC array sensing. The responses of two types of commercially available MC arrays were studied under conditions of temperature change, solution replacement and biochemical molecular interaction. For the thermal response, the deflections of both arrays were found to be proportional to temperature, and the responses of the MCs in both arrays were consistent with each other. The thermal response sensitivity for each MC during temperature increase and decrease also showed good consistency. Moreover, the MC array showed good consistency for the response induced by solution replacement. Finally, we also demonstrated that the MC array had good consistency in biochemical detection, exemplified by aflatoxin antibody-anti gen binding. The good response consistency makes this technology reliable and accurate for biochemical sensing.展开更多
文摘给出了一种用于非制冷光学读出红外探测器的核心器件———双材料微悬臂梁阵列的设计和制作.微梁阵列是无硅基底的S iNx/Au双材料单层膜结构,其制作工艺简单、可以直接放在空气中成像.实验使用了设计制作的140×98微梁阵列和高信噪比的12-b it CCD,得到120℃以上的物体热像,噪声等效温度差(NETD)为7K左右,实验结果与热机械模型预测结果一致.
基金supported by the National Natural Science Foundation of China(Grant No.11502265)the Fundamental Research Funds for the Central Universities(Grant No.WK2480000002)
文摘Array sensing is increasingly important in the development of microcantilever(MC) sensors, and response consistency is the foundation for MC array sensing. In the present work, we investigated the response consistency of MC array sensing. The responses of two types of commercially available MC arrays were studied under conditions of temperature change, solution replacement and biochemical molecular interaction. For the thermal response, the deflections of both arrays were found to be proportional to temperature, and the responses of the MCs in both arrays were consistent with each other. The thermal response sensitivity for each MC during temperature increase and decrease also showed good consistency. Moreover, the MC array showed good consistency for the response induced by solution replacement. Finally, we also demonstrated that the MC array had good consistency in biochemical detection, exemplified by aflatoxin antibody-anti gen binding. The good response consistency makes this technology reliable and accurate for biochemical sensing.