期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
四种块体非晶合金在过冷液相区内的微成形能力
1
作者 张猛 李宁 +1 位作者 谌祺 柳林 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2011年第12期2162-2166,共5页
采用Si模制作的V型槽微压印实验评价了4种具有不同脆度的块体非晶合金(Pd40Cu30Ni10P20,Zr65Cu15Al10Ni10,Cu46Zr42Al7Y5,Zr58.5Cu15.6Al10.3Ni12.8Nb2.8)在过冷液相区内的微成形能力。结果表明,尽管不同的BMG表现出不同的表观粘度,但... 采用Si模制作的V型槽微压印实验评价了4种具有不同脆度的块体非晶合金(Pd40Cu30Ni10P20,Zr65Cu15Al10Ni10,Cu46Zr42Al7Y5,Zr58.5Cu15.6Al10.3Ni12.8Nb2.8)在过冷液相区内的微成形能力。结果表明,尽管不同的BMG表现出不同的表观粘度,但在相同的应变条件下,各种BMG却呈现出相似的充型面积,这表明它们具有相似的微成形能力。这一结果源于在本实验条件下(成形温度T=1.07Tg,应变率ε&=2×10-3s-1),各BMG均遵循相同的牛顿流变机制。最后,通过有限元模拟验证了这一结论。 展开更多
关键词 块体非晶合金 过冷液相区 脆度 微成形能力
原文传递
Effect of cold rolling deformation on microstructure evolution and mechanical properties of spray formed Al−Zn−Mg−Cu−Cr alloys
2
作者 Cai-he FAN Yi-hui LI +4 位作者 Qin WU Ling OU Ze-yi HU Yu-meng NI Jian-jun YANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2442-2454,共13页
The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0... The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0.13Cr(wt.%)alloy,was investigated.SEM,TEM,and EBSD were used to analyze the microstructures,and tensile tests were conducted to assess mechanical properties.The results indicate that the D1-T6 sample,subjected to 25%cold rolling deformation,exhibits finer grains(3.35μm)compared to the D0-T6 sample(grain size of 4.23μm)without cold rolling.Cold rolling refines the grains that grow in solution treatment.Due to the combined effects of finer and more dispersed precipitates,higher dislocation density and smaller grains,the yield strength and ultimate tensile strength of the D1-T6 sample can reach 663 and 737 MPa,respectively.In comparison to the as-extruded and D0-T6 samples,the yield strength of the D1-T6 sample increases by 415 and 92 MPa,respectively. 展开更多
关键词 Al−Zn−Mg−Cu alloy spray forming microstructure evolution mechanical properties strengthening mechanism
下载PDF
Effect of process parameters on microstructure and properties of AM50A magnesium alloy parts formed by double control forming 被引量:4
3
作者 姜巨福 王迎 曲建俊 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第2期321-333,共13页
Effects of process parameters on microstructure and mechanical properties of the AM50A magnesium alloy components formed by double control forming (DCF) were investigated via a four-factor and four-level orthogonal ... Effects of process parameters on microstructure and mechanical properties of the AM50A magnesium alloy components formed by double control forming (DCF) were investigated via a four-factor and four-level orthogonal experiment. The variable curves of DCF showed that the forging procedure was started in the following 35 ms after the injection procedure was completed. It was confirmed that the high-speed filling and high-pressure densifying were combined together in the DCF process. Better surface quality and higher mechanical properties were achieved in the components formed by DCF as compared to die casting (DC) due to the refined and uniform microstructure with a few defects or without defects. Injection speed affected more effectively the yield strength (YS), ultimate tensile strength (UTS) and elongation as compared to pouring temperature, die temperature and forging force. But the pouring temperature had a more significant effect on hardness as compared to injection speed, die temperature and forging force. Pouring temperature of 675 &#176;C, injection speed of 2.7 m/s and forging force of 4000 kN except for die temperature were the optimal parameters for obtaining the highest YS, UTS, elongation and Vickers hardness. Die temperatures of 205, 195, 195 and 225 &#176;C were involved in achieving the highest YS, UTS, elongation and Vickers hardness, respectively. Obvious microporosity and microcracks were found on the fracture surface of the components formed by DC, deteriorating the mechanical properties. However, the tensile fracture morphology of the components formed by DCF was characterized by ductile fracture due to a large number of dimples and no defects, which was beneficial for improving the mechanical properties. 展开更多
关键词 AM50A magnesium alloy double control forming mechanical properties microstructure
下载PDF
Effects of technical parameters of continuous semisolid rolling on microstructure and mechanical properties of Mg-3Sn-1Mn alloy 被引量:5
4
作者 管仁国 赵占勇 +2 位作者 钞润泽 赵红亮 刘春明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期73-79,共7页
A sloping semisolid rheo-rolling process of Mg-3Sn-1Mn alloy was developed, and the effects of process parameters on the microstructure and mechanical properties of Mg-3Sn-lMn alloy strip were studied. The results sho... A sloping semisolid rheo-rolling process of Mg-3Sn-1Mn alloy was developed, and the effects of process parameters on the microstructure and mechanical properties of Mg-3Sn-lMn alloy strip were studied. The results show that the primary grain average diameter of the strip increases with the increase of the roll speed. The primary grain average diameter decreases firstly and then increases with the increase of the vibration frequency, and the tensile strength and elongation of the strip increase firstly and then decrease with the increase of the vibration frequency. The primary grain average diameter increases with the increase of casting temperature, and the tensile strength and elongation of the strip decrease correspondingly. When the casting temperature is 670℃, the roll speed is 52 mm/s, and the vibration frequency is 60 Hz, Mg-3Sn-1Mn alloy strip with good properties is produced. The mechanical properties of the present product are higher than those of Mg-3Sn-lMn alloy casting with the addition of 0.87% Ce (mass fraction). 展开更多
关键词 Mg-3Sn-lMn alloy SEMISOLID continuous rheo-rolling forming microstructure mechanical properties
下载PDF
Hydriding and dehydriding kinetics of nanocrystalline and amorphous Mg_2Ni_(1-x)Mn_x(x=0-0.4) alloys prepared by melt spinning 被引量:2
5
作者 张羊换 祁焱 +3 位作者 任慧平 马志鸿 郭世海 赵栋梁 《Journal of Central South University》 SCIE EI CAS 2011年第4期985-992,共8页
A partial substitution of Ni by Mn was implemented in order to improve the hydriding and dehydriding kinetics of the Mg2Ni-type alloys. The nanocrystalline and amorphous MgzNi-type Mg2Nil-xMnx (x=0, 0. 1, 0.2, 0.3, ... A partial substitution of Ni by Mn was implemented in order to improve the hydriding and dehydriding kinetics of the Mg2Ni-type alloys. The nanocrystalline and amorphous MgzNi-type Mg2Nil-xMnx (x=0, 0. 1, 0.2, 0.3, 0.4) alloys were synthesized by the melt-spinning technique. The structures of the as-cast and spun alloys were studied by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The hydrogen absorption and desorption kinetics of the alloys were measured with an automatically controlled Sieverts apparatus. The results show that the as-spun Mn-free alloy holds a typical nanocrystalline structure, whereas the as-spun alloys containing Mn display a nanocrystalline and amorphous structure, confirming that the substitution of Mn for Ni intensifies the glass forming ability of the Mg2Ni-type alloy. The hydrogen absorption and desorption capacities and kinetics of the alloys increase with increasing the spinning rate, for which the nanocrystalline and amorphous structure produced by the melt spinning is mainly responsible. The substitution of Mn for Ni evidently improves the hydrogen desorption performance. The hydrogen desorption capacities of the as-cast and spun alloys rise with the increase in the percentage of Mn substitution. 展开更多
关键词 Mg2Ni-type alloy MELT-SPINNING structure hydriding kinetics dehydriding kinetics
下载PDF
Influence of temperature on creep behavior,mechanical properties and microstructural evolution of an Al-Cu-Li alloy during creep age forming 被引量:2
6
作者 ZHOU Chang ZHAN Li-hua +2 位作者 LI He ZHAO Xing HUANG Ming-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第8期2285-2294,共10页
The effect of temperature in range of 155-175 ℃ on the creep behavior, microstructural evolution, and precipitation of an Al-Cu-Li alloy was experimentally investigated during creep ageing deformation under 180 MPa f... The effect of temperature in range of 155-175 ℃ on the creep behavior, microstructural evolution, and precipitation of an Al-Cu-Li alloy was experimentally investigated during creep ageing deformation under 180 MPa for 20 h. Increasing temperature resulted in a noteworthy change in creep ageing behaviour, including a variation in creep curves, an improvement in creep rate during early creep ageing, and an increased creep strain. Tensile tests indicate that the specimen aged at higher temperature reached peak strength within a shorter time. Transmission electron microscopy(TEM) was employed to explore the effect of temperature on the microstructural evolution of the AA2198 during creep ageing deformation. Many larger dislocations and even tangled dislocation structures were observed in the sample aged at higher temperature. The number of T1 precipitates increased at higher ageing temperature at the same ageing time. Based on the analysed results, a new mechanism, considering the combined effects of the formation of larger dislocation structures induced by higher temperature and diffusion of solute atoms towards these larger or tangled dislocations, was proposed to explain the effect of temperature on microstructural evolution and creep behaviour. 展开更多
关键词 Al-Cu-Li alloys creep age forming mechanical properties MICROSTRUCTURE PRECIPITATION
下载PDF
Mechanical properties and microstructure evolution in incremental forming of AA5754 and AA6061 aluminum alloys 被引量:4
7
作者 Ghulam HUSSAIN Muhammad ILYAS +1 位作者 B.B.LEMOPI ISIDORE Wasim A.KHAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第1期51-64,共14页
This study performs single point incremental forming(SPIF)on two aluminum alloys(i.e.AA5754 and AA6061),and analyzes their post forming mechanical properties and microstructure evolution.The forming parameters namely ... This study performs single point incremental forming(SPIF)on two aluminum alloys(i.e.AA5754 and AA6061),and analyzes their post forming mechanical properties and microstructure evolution.The forming parameters namely wall angle(35°-55°),feed rate(1-4 m/min),spindle rotational speed(50-1000 r/min),and lubricant(grease and hydraulic oil)are varied to probe detailed processing effects.The pre-and post-SPIF mechanical properties and microstructures are characterized by conducting tensile tests and optical microscopy,respectively.It is shown that an increase in the wall angle,feed rate and rotational speed causes microscopic variations in the alloys such that the grains of AA5754 and the second phase particles of AA6061 elongate.As a result,the ultimate tensile strength of the formed parts is increased by 10%for AA5754 and by 8%for AA6061.And,the ductility of AA5754 is decreased from 22.9%to 12%and that of AA6061 is decreased from 16%to 10.7%.Regarding the lubricant effect,it is shown that the mechanical properties remain insensitive to the type of lubricant employed.These results indicate that SPIF processing modifies the microstructure of Al alloys in a way to enhance the strength at the cost of ductility. 展开更多
关键词 single point incremental forming mechanical properties microstructure evolution aluminum alloy wall angle forming parameter
下载PDF
Effects of rheoforming on microstructures and mechanical properties of 7075 wrought aluminum alloy 被引量:13
8
作者 郭洪民 杨湘杰 +2 位作者 王家宣 胡斌 朱光磊 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第3期355-360,共6页
It is economically advantageous to cast wrought aluminum alloys directly into near-net-shape components.The objective of the present work is to take advantage of the rheoforming with 7075 alloy to improve the competit... It is economically advantageous to cast wrought aluminum alloys directly into near-net-shape components.The objective of the present work is to take advantage of the rheoforming with 7075 alloy to improve the competitiveness of this emerging technology in the manufacture of wrought aluminum alloy.High quality semi-solid slurry was produced,in which primary α(Al) presents in diameter of 62 μm and shape factor of 0.78 and features no eutectics entrapped.Higher forming pressure results in small grain size,improved shape factor and higher density.Especially,rheoforming can effectively reduce the occurrence of hot tearing.The average yield strength and elongation of the rheoformed samples in the T6 condition are 483 MPa and 8%,respectively. 展开更多
关键词 7075 Al alloy rheoforming semi-solid processing
下载PDF
Relationship of glass forming ability and local structural properties of liquid Cu-Zr alloys
9
作者 李敬芬 刘长松 《Journal of Chongqing University》 CAS 2011年第2期51-59,共9页
Molecular dynamics(MD) simulations were performed to investigate the glass forming ability(GFA) and microscopic structural properties of liquid Cu-Zr alloys.Based on the analysis of composition dependences of the redu... Molecular dynamics(MD) simulations were performed to investigate the glass forming ability(GFA) and microscopic structural properties of liquid Cu-Zr alloys.Based on the analysis of composition dependences of the reduced glass transition temperatures and the excess volume,we found that the Cu-Zr glasses have the largest GFA at Cu65Zr35 composition.To get more detailed information of local structure,we calculated the pair correlation functions,partial pair correlation functions,the excess entropy,chemical order parameter,coordination number,and Voronoi index of Cu-Zr liquids.We found that there exists an obvious and close relationship among the GFA,the excess entropy calculated using the total pair correlation functions,chemical order parameters,and some Cu centered cluster with Voronoi index <0,2,8,1> and Zr centered cluster with Voronoi index <0,3,6,4>,which all have nonlinear dependences on Cu/Zr concentration and have extreme values at liquid Cu65Zr35 composition. 展开更多
关键词 bulk metallic glass glass forming ability microscopic structure molecular dynamics simulation
下载PDF
Compositional dependence of microstructure and tribological properties of plasma sprayed Fe-based metallic glass coatings 被引量:4
10
作者 YANG Qin LI Ran +3 位作者 LIU ZengQian SHI MinJie LUO XueKun ZHANG Tao 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第5期1335-1342,共8页
Gas-atomized powders of three Fe-based glass-forming alloys were sprayed on mild steel substrates by atmospheric plasma spaying using the same spaying parameters. Microstructures, thermal stabilities and tribological ... Gas-atomized powders of three Fe-based glass-forming alloys were sprayed on mild steel substrates by atmospheric plasma spaying using the same spaying parameters. Microstructures, thermal stabilities and tribological properties of the sprayed coatings were analyzed. The coating performances showed a strong dependence on the intrinsic characters of the compositions, i.e., glass-forming ability (GFA) and supercooled liquid region (ATx). The coatings tended to exhibit higher amorphous phase fraction for the composition with higher GFA and lower porosity for that with larger ATX. All the coatings exhibited superior wear resistance compared with the substrate. Higher wear resistance could be obtained in coatings with higher amorphous phase fraction, i.e. higher GFA of the composition. This study has important implications for composition selecting and optimizing in the fabrication of metallic glass coatings. 展开更多
关键词 metallic glasses MICROSTRUCTURE RAPID-SOLIDIFICATION coating materials X-ray diffraction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部